会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Accelerated annealing of gallium arsenide solar cells
    • 砷化镓太阳能电池的加速退火
    • US4395293A
    • 1983-07-26
    • US246360
    • 1981-03-23
    • Ronald C. KnechtliRobert Y. LooG. Sanjiv Kamath
    • Ronald C. KnechtliRobert Y. LooG. Sanjiv Kamath
    • H01L31/042H01L21/324H01L21/326H01L31/04H01L31/052H01L31/054H01L31/18H01L21/263C03C3/04
    • H01L31/1864H01L21/3245H01L21/326H01L31/0547H01L31/1832Y02E10/52Y02E10/544Y02P70/521Y10S136/29Y10S148/084
    • A method is provided for accelerating and improving the recovery of GaAs solar cells from the damage which they experience in space under high energy particle irradiation scuh as electrons, protons and neutrons. The method comprises combining thermal annealing with injection annealing. Injection annealing is the recovery from radiation damage resulting from minority carrier injection into the damaged semiconductor, nonradiative minority carrier combination of the injected minority carriers, transfer of the recombination energy to the crystal lattice and utilization of this energy to remove the defects caused by the high energy particle irradiation. The combined annealing of this invention is implemented by heating the solar cells to a moderate temperature (on the order of about 200.degree. C. to 300.degree. C. or less), while at the same time injecting the minority carriers by either of two methods: current injection (by applying an adequate forward bias voltage) or photo-injection (by exposing the cell to adequate light intensity). Sunlight directed onto the solar cells may be employed for heating the solar cells. Alternatively, energy dissipation in the solar cells caused by the flow of a forward bias current may be used to heat the solar cells.In one example, thermal annealing at 200.degree. C. alone was observed to bring the power output up to a level of about 75% of its original value from a level of about 50%, resulting from radiation-induced damage. Combined annealing, employing thermal annealing at 200.degree. C. in conjunction with simultaneous injection of minority carriers at a current density of 125 mA/cm.sup.2, was observed to bring the power output to a level of nearly 90%.
    • 提供了一种方法,用于加速和改善GaAs太阳能电池从高能粒子辐射照射下在空间中受到的电子,质子和中子的损伤的回收。 该方法包括将热退火与注射退火相组合。 注射退火是从少数载流子注入损坏的半导体,非辐射少数载流子组合注入的少数载流子,将复合能转移到晶格并利用该能量消除由高 能量粒子照射。 本发明的组合退火是通过将太阳能电池加热到中等温度(约200℃至300℃或更低的数量级)来实现的,同时通过两种方法之一注入少数载流子 :电流注入(通过施加足够的正向偏置电压)或光注射(通过将电池暴露于足够的光强度)。 可以采用引导到太阳能电池上的阳光来加热太阳能电池。 或者,可以使用由正向偏置电流的流动引起的太阳能电池中的能量耗散来加热太阳能电池。
    • 2. 发明授权
    • Process for fabricating heterojunction structures utilizing a double
chamber vacuum deposition system
    • 使用双室真空沉积系统制造异质结结构的工艺
    • US4171235A
    • 1979-10-16
    • US931347
    • 1978-08-07
    • Lewis M. FraasKenneth R. ZanioRonald C. Knechtli
    • Lewis M. FraasKenneth R. ZanioRonald C. Knechtli
    • H01L31/0687H01L31/074H01L31/18H01L21/205H01L21/18
    • H01L31/0687H01L31/074H01L31/18H01L31/1844Y02E10/544Y10S148/059Y10S148/11Y10S148/169
    • The specification describes a gallium aluminum arsenide-gallium arsenide-germanium solar cell and fabrication process therefor wherein the deposition of a layer of gallium aluminum arsenide establishes a first PN junction in the GaAs of one bandgap energy on one side of a gallium arsenide substrate, and the deposition of a layer of germanium establishes a second PN junction in Ge of a different bandgap energy on the other side of the GaAs substrate. The two PN junctions are responsive respectively to different wavelength ranges of solar energy to thus enhance the power output capability of a single wafer (substrate) solar cell. Utilization of the Group IV element germanium, as contrasted to compound semiconductors, simplifies the process control requirements relative to known prior art compound semiconductor processes, and germanium also provides a good crystal lattice match with gallium arsenide and thereby maximizes process yields. This latter feature also minimizes losses caused by the crystal defects associated with the interface between two semiconductors.
    • 该说明书描述了一种镓砷化镓镓砷化锗 - 锗锗太阳能电池及其制造方法,其中沉积砷化镓铝层在砷化镓衬底的一侧上的一个带隙能量的GaAs中建立第一PN结,以及 锗层的沉积在GaAs衬底的另一侧上在不同带隙能的Ge中建立第二PN结。 两个PN结分别响应于太阳能的不同波长范围,从而提高单个晶片(衬底)太阳能电池的功率输出能力。 与化合物半导体相比,IV族元素锗的利用简化了相对于已知的现有技术化合物半导体工艺的工艺控制要求,并且锗还提供了与砷化镓的良好晶格匹配,从而使工艺产量最大化。 后一个特征还使由与两个半导体之间的界面相关联的晶体缺陷引起的损耗最小化。
    • 3. 发明授权
    • Multijunction gallium aluminum arsenide-gallium arsenide-germanium solar
cell and process for fabricating same
    • 多结镓镓砷化镓砷化镓锗太阳能电池及其制造方法
    • US4128733A
    • 1978-12-05
    • US864300
    • 1977-12-27
    • Lewis M. FraasKenneth R. ZanioRonald C. Knechtli
    • Lewis M. FraasKenneth R. ZanioRonald C. Knechtli
    • H01L31/0687H01L31/074H01L31/06
    • H01L31/0687H01L31/074Y02E10/544Y10S148/056Y10S148/065Y10S148/11Y10S438/933
    • The specification describes a gallium aluminum arsenide-gallium arsenide-germanium solar cell and fabrication process therefor wherein the deposition of a layer of gallium aluminum arsenide establishes a first PN junction in the GaAs of one bandgap energy on one side of a gallium arsenide substrate, and the deposition of a layer of germanium establishes a second PN junction in Ge of a different bandgap energy on the other side of the GaAs substrate. The two PN junctions are responsive respectively to different wavelength ranges of solar energy to thus enhance the power output capability of a single wafer (substrate) solar cell. Utilization of the Group IV element germanium, as contrasted to compound semiconductors, simplifies the process control requirements relative to known prior art compound semiconductor processes, and germanium also provides a good crystal lattice match with gallium arsenide and thereby maximizes process yields. This latter feature also minimizes losses caused by the crystal defects associated with the interface between two semiconductors.
    • 该说明书描述了一种镓砷化镓镓砷化锗 - 锗锗太阳能电池及其制造方法,其中沉积砷化镓铝层在砷化镓衬底的一侧上的一个带隙能量的GaAs中建立第一PN结,以及 锗层的沉积在GaAs衬底的另一侧上在不同带隙能的Ge中建立第二PN结。 两个PN结分别响应于太阳能的不同波长范围,从而提高单个晶片(衬底)太阳能电池的功率输出能力。 与化合物半导体相比,IV族元素锗的利用简化了相对于已知的现有技术化合物半导体工艺的工艺控制要求,并且锗还提供了与砷化镓的良好晶格匹配,从而使工艺产量最大化。 后一个特征还使由与两个半导体之间的界面相关联的晶体缺陷引起的损耗最小化。
    • 4. 发明授权
    • Accelerated annealing of gallium arsenide solar cells
    • 砷化镓太阳能电池的加速退火
    • US4494302A
    • 1985-01-22
    • US494610
    • 1983-05-16
    • Ronald C. KnechtliRobert Y. LooG. Sanjiv Kamath
    • Ronald C. KnechtliRobert Y. LooG. Sanjiv Kamath
    • H01L21/324H01L21/326H01L31/18
    • H01L21/3245H01L21/326H01L31/18Y10S136/29Y10T29/413
    • A method is provided for accelerating and improving the recovery of GaAs solar cells from the damage which they experience in space under high energy particle irradiation such as electrons, protons and neutrons. The method comprises combining thermal annealing with injection annealing. Injection annealing is the recovery from radiation damage resulting from minority carrier injection into the damaged semiconductor, nonradiative minority carrier combination of the injected minority carriers, transfer of the recombination energy to the crystal lattice and utilization of this energy to remove the defects caused by the high energy particle irradiation. The combined annealing of this invention is implemented by heating the solar cells to a moderate temperature (on the order of about 200.degree. C. to 300.degree. C. or less), while at the same time injecting the minority carriers by either of two methods: current injection (by applying an adequate forward bias voltage) or photo-injection (by exposing the cell to adequate light intensity). Sunlight directed onto the solar cells may be employed for heating the solar cells. Alternatively, energy dissipation in the solar cells caused by the flow of a forward bias current may be used to heat the solar cells.In one example, thermal annealing at 200.degree. C. alone was observed to bring the power output up to a level of about 75% of its original value from a level of about 50%, resulting from radiation-induced damage. Combined annealing, employing thermal annealing at 200.degree. C. in conjunction with simultaneous injection of minority carriers at a current density of 125 mA/cm.sup.2, was observed to bring the power output to a level of nearly 90%.
    • 提供了一种方法,用于加速和改善GaAs太阳能电池在高能粒子辐射下如空间中遇到的损害,如电子,质子和中子。 该方法包括将热退火与注射退火相组合。 注射退火是从少数载流子注入损坏的半导体,注入的少数载流子的非辐射少数载流子组合,将复合能转移到晶格并利用该能量去除由高 能量粒子照射。 本发明的组合退火是通过将太阳能电池加热到中等温度(约200℃至300℃或更低的数量级)来实现的,同时通过两种方法之一注入少数载流子 :电流注入(通过施加足够的正向偏置电压)或光注射(通过将电池暴露于足够的光强度)。 可以采用引导到太阳能电池上的阳光来加热太阳能电池。 或者,可以使用由正向偏置电流的流动引起的太阳能电池中的能量耗散来加热太阳能电池。 在一个实例中,仅观察到在200℃下的热退火,使得功率输出从其原始值的约75%的水平提高到由辐射诱发的损伤引起的约50%的水平。 观察到组合退火,在200℃下进行热退火,同时以125mA / cm 2的电流密度同时注入少数载流子,使功率输出达到接近90%的水平。