会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Bit-serial neuroprocessor architecture
    • 位串行神经处理器架构
    • US06199057B1
    • 2001-03-06
    • US08956890
    • 1997-10-23
    • Raoul Tawel
    • Raoul Tawel
    • G06F1518
    • G01M15/11
    • A neuroprocessor architecture employs a combination of bit-serial and serial-parallel techniques for implementing the neurons of the neuroprocessor. The neuroprocessor architecture includes a neural module containing a pool of neurons, a global controller, a sigmoid activation ROM look-up-table, a plurality of neuron state registers, and a synaptic weight RAM. The neuroprocessor reduces the number of neurons required to perform the task by time multiplexing groups of neurons from a fixed pool of neurons to achieve the successive hidden layers of a recurrent network topology.
    • 神经处理器架构采用位串行和串行并行技术的组合来实现神经处理器的神经元。 神经处理器架构包括包含神经元池的神经模块,全局控制器,S形激活ROM查找表,多个神经元状态寄存器和突触权重RAM。 神经处理器通过从固定的神经元池中时间复用神经元组来减少执行任务所需的神经元数量,以实现复现网络拓扑的连续隐藏层。
    • 3. 发明授权
    • High-performance ultra-low power VLSI analog processor for data
compression
    • 用于数据压缩的高性能超低功耗VLSI模拟处理器
    • US5506801A
    • 1996-04-09
    • US196295
    • 1994-02-14
    • Raoul Tawel
    • Raoul Tawel
    • G06T9/00H03M7/30G06G7/00
    • G06T9/008H03M7/3082
    • An apparatus for data compression employing a parallel analog processor. The apparatus includes an array of processor cells with N columns and M rows wherein the processor cells have an input device, memory device, and processor device. The input device is used for inputting a series of input vectors. Each input vector is simultaneously input into each column of the array of processor cells in a pre-determined sequential order. An input vector is made up of M components, ones of which are input into ones of M processor cells making up a column of the array. The memory device is used for providing ones of M components of a codebook vector to ones of the processor cells making up a column of the array. A different codebook vector is provided to each of the N columns of the array. The processor device is used for simultaneously comparing the components of each input vector to corresponding components of each codebook vector, and for outputting a signal representative of the closeness between the compared vector components. A combination device is used to combine the signal output from each processor cell in each column of the array and to output a combined signal. A closeness determination device is then used for determining which codebook vector is closest to an input vector from the combined signals, and for outputting a codebook vector index indicating which of the N codebook vectors was the closest to each input vector input into the array.
    • 一种采用并行模拟处理器的数据压缩装置。 该装置包括具有N列和M行的处理器单元的阵列,其中处理器单元具有输入装置,存储装置和处理器装置。 输入设备用于输入一系列输入向量。 每个输入向量以预定的顺序顺序同时输入到处理器单元阵列的每一列。 输入向量由M个分量组成,其中一个分量被输入到构成数组列的M个处理器单元中。 存储器件用于将码本矢量的M个分量中的一个组成一个组成阵列列的处理器单元。 向阵列的N列中的每一列提供不同的码本向量。 处理器装置用于将每个输入向量的分量与每个码本向量的相应分量进行比较,并用于输出表示比较矢量分量之间的接近度的信号。 组合装置用于组合阵列每列中每个处理器单元的信号输出并输出组合信号。 然后使用接近度确定装置来确定哪个码本向量与组合信号最接近于输入向量,并且用于输出指示N个码本向量中哪一个最接近输入到阵列中的每个输入向量的码本向量索引。
    • 4. 发明授权
    • Adaptive neuron model--an architecture for the rapid learning of
nonlinear topological transformations
    • 自适应神经元模型 - 用于非线性拓扑变换的快速学习的架构
    • US5371834A
    • 1994-12-06
    • US937335
    • 1992-08-28
    • Raoul Tawel
    • Raoul Tawel
    • B25J9/16G06N3/04G06F15/18
    • G06K9/6251B25J9/1607G06N3/0445G05B2219/39271
    • A method and an apparatus for the rapid learning of nonlinear mappings and topological transformations using a dynamically reconfigurable artificial neural network is presented. This fully-recurrent Adaptive Neuron Model (ANM) network has been applied to the highly degenerative inverse kinematics problem in robotics, and its performance evaluation is bench-marked. Once trained, the resulting neuromorphic architecture was implemented in custom analog neural network hardware and the parameters capturing the functional transformation downloaded onto the system. This neuroprocessor, capable of 10.sup.9 ops/sec, was interfaced directly to a three degree of freedom Heathkit robotic manipulator. Calculation of the hardware feed-forward pass for this mapping was benchmarked at .apprxeq.10 .mu.sec.
    • 提出了使用动态可重构的人工神经网络快速学习非线性映射和拓扑变换的方法和装置。 这种完全复现的自适应神经元模型(ANM)网络已经应用于机器人技术中的高度退化的逆运动学问题,其性能评估被标准化。 一旦训练,所得到的神经元结构在定制的模拟神经网络硬件中实现,并且参数捕获功能转换下载到系统上。 这种具有109次操作/秒的神经处理器直接连接到三自由度Heathkit机器人操纵器。 该映射的硬件前馈通过计算以APPROX 10微秒为基准。