会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Packet loss concealment based on statistical n-gram predictive models for use in voice-over-IP speech transmission
    • 基于用于语音IP语音传输的统计n-gram预测模型的分组丢失隐藏
    • US07701886B2
    • 2010-04-20
    • US10856728
    • 2004-05-28
    • Minkyu LeeQiru ZhouImed Zitouni
    • Minkyu LeeQiru ZhouImed Zitouni
    • H04Q11/00
    • G10L19/04G10L19/005H04L65/80H04Q2213/13034H04Q2213/13296H04Q2213/13389
    • A method for performing packet loss concealment of lost packets in Voice over IP (Internet Protocol) speech transmission. Statistical n-gram models are initially created with use of a training speech corpus, and then, packets lost during transmission are advantageously replaced based on these models. In particular, the existence of statistical patterns in successive voice over IP (VoIP) packets is advantageously exploited by first using conventional vector quantization (VQ) techniques to quantize the parameter data for each packet with use of a corresponding VQ index, and then determining statistical correlations between consecutive sequences of such VQ indices representative of the corresponding sequences of n packets. The statistic n-gram predictive models so created are then used to predict parameter data for use in representing lost data packets.
    • 一种用于在IP语音(因特网协议)语音传输中执行丢包隐藏丢失分组的方法。 最初使用训练语音语料库创建统计n-gram模型,然后基于这些模型有利地替换传输期间丢失的分组。 特别地,通过首先使用常规矢量量化(VQ)技术来利用相应的VQ索引对每个分组的参数数据进行量化,有利地利用连续IP语音(VoIP)分组中的统计模式的存在,然后确定统计 这种VQ索引的连续序列之间的相关性表示n个分组的相应序列。 然后,如此创建的统计量n-gram预测模型用于预测用于表示丢失数据分组的参数数据。
    • 4. 发明申请
    • Network-Based Collaborated Telestration on Video, Images or Other Shared Visual Content
    • 基于网络的协作式视频,图像或其他共享视觉内容的Telestration
    • US20110107238A1
    • 2011-05-05
    • US12608068
    • 2009-10-29
    • Dong LiuQiru Zhou
    • Dong LiuQiru Zhou
    • G06F15/16G06F3/048
    • H04N7/15G06Q10/101G06Q50/20G06Q50/22H04L12/1831
    • A telestration system comprises a telestration server configured to communicate with an arbitrary number of telestration clients over a network. The telestration server is further configured to receive telestration input signals from respective ones of the clients and to send telestration output signals to the respective clients, with the telestration output signal sent to a given one of the clients comprising telestration information derived from the telestration input signal received from at least one other one of the clients. Each of the clients with the support of the telestration server can generate a combined telestration overlay for presentation with associated visual content shared between the clients.
    • 远程审计系统包括被配置为通过网络与任意数量的远程审计客户端通信的远程监控服务器。 远程服务器还被配置为从相应的客户端接收远程鉴别输入信号,并且向远端区域输出信号发送远程信号输出信号到各个客户端,其中远程输出信号被发送给给定的一个客户端,包括从远程输入信号 从至少另一个客户端收到。 具有远程服务器支持的每个客户端都可以生成一个组合的远程复用重叠,用于呈现客户端之间共享的相关视觉内容。
    • 8. 发明申请
    • Method and apparatus for active speaker selection using microphone arrays and speaker recognition
    • 用于使用麦克风阵列和扬声器识别的主动扬声器选择的方法和装置
    • US20090220065A1
    • 2009-09-03
    • US12074276
    • 2008-03-03
    • Sudhir Raman AhujaJingdong ChenYiteng Arden HuangDong LiuQiru Zhou
    • Sudhir Raman AhujaJingdong ChenYiteng Arden HuangDong LiuQiru Zhou
    • H04M3/56
    • H04M3/569G10L17/00G10L2021/02166H04M2201/41H04M2203/5072
    • A method and apparatus for performing active speaker selection in teleconferencing applications illustratively comprises a microphone array module, a speaker recognition system, a user interface, and a speech signal selection module. The microphone array module separates the speech signal from each active speaker from those of other active speakers, providing a plurality of individual speaker's speech signals. The speaker recognition system identifies each currently active speaker using conventional speaker recognition/identification techniques. These identities are then transmitted to a remote teleconferencing location for display to remote participants via a user interface. The remote participants may then select one of the identified speakers, and the speech signal selection module then selects for transmission the speech signal associated with the selected identified speaker, thereby enabling the participants at the remote location to listen to the selected speaker and neglect the speech from other active speakers.
    • 用于在电话会议应用中执行主动扬声器选择的方法和装置示例性地包括麦克风阵列模块,扬声器识别系统,用户界面和语音信号选择模块。 麦克风阵列模块将来自每个有源扬声器的语音信号与其他有源扬声器的语音信号分离,从而提供多个单独的扬声器的语音信号。 扬声器识别系统使用常规扬声器识别/识别技术识别每个当前有效的扬声器。 然后将这些身份发送到远程电话会议位置,以通过用户界面向远程参与者显示。 然后,远程参与者可以选择所识别的扬声器中的一个,并且语音信号选择模块然后选择用于传输与所选择的所识别的扬声器相关联的语音信号,从而使远程位置的参与者能够听取所选择的说话者并忽略语音 从其他有源音箱
    • 10. 发明授权
    • Automatic speech/speaker recognition over digital wireless channels
    • 数字无线频道上的自动语音/扬声器识别
    • US06336090B1
    • 2002-01-01
    • US09201082
    • 1998-11-30
    • Wu ChouMichael Charles RecchioneQiru Zhou
    • Wu ChouMichael Charles RecchioneQiru Zhou
    • G10L1502
    • G10L15/30G10L15/02G10L15/20
    • Automatic Speech Recognition (ASR) is achieved in wireless communications systems in which reliable ASR feature vector sequences are derived at a base station directly from digitally transmitted speech coder parameters, with no additional processing or signal modification required at the originating handset. No secondary channel need be provided for the transmission of ASR feature vectors. In operating on received speech coder parameters prior to conversion to a voice signal the present system and methods avoid the lossy conversion process and associated voice distortion. Since the received voice parameters are error protected during transmission they are received with greater accuracy. All, or a subset, of speech coding parameters, including, in appropriate cases, spectral envelope parameters, reflection coefficients, LSPs, LSFs, LPCs, LPCCs, and weighted LPCCs may be processed at a receiving base station or forwarded to another location for processing.
    • 自动语音识别(ASR)在无线通信系统中实现,其中可靠的ASR特征向量序列直接从数字传输的语音编码器参数在基站导出,而在起始手持机上不需要额外的处理或信号修改。 不需要为ASR特征向量的传输提供二级信道。 在转换成语音信号之前对接收到的语音编码器参数进行操作,本系统和方法避免了有损转换过程和相关的语音失真。 由于接收到的语音参数在传输期间受到错误保护,所以它们以更高的精度被接收。语音编码参数的所有或子集包括在适当的情况下包括频谱包络参数,反射系数,LSP,LSF,LPC,LPCC和 加权LPCC可以在接收基站处理或转发到另一个位置进行处理。