会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • System and method for dense-stochastic-sampling imaging
    • 密集随机抽样成像的系统和方法
    • US08830314B2
    • 2014-09-09
    • US13535468
    • 2012-06-28
    • Gaudenz DanuserPaul C. Goodwin
    • Gaudenz DanuserPaul C. Goodwin
    • H04N7/18G02B21/36G01N21/64
    • G01N21/6428G01N21/636G01N21/6458G01N2021/6415G01N2021/6419G01N2201/126G02B21/365G02B21/367G06T3/4053
    • Embodiments of the present invention are directed to imaging technologies, and, in particular, to an imaging system that detects relatively weak signals, over time, and that uses the detected signals to determine the positions of signal emitters. Particular embodiments of the present invention are directed to methods and systems for imaging fluorophore-labeled samples in order to produce images of the sample at resolutions significantly greater than the diffraction-limited resolution associated with optical microscopy. Embodiments of the present invention employ overlapping-emitter-image disambiguation to allow data to be collected from densely arranged emitters, which significantly decreases the data-collection time for producing intermediate images as well as the number of intermediate images needed to computationally construct high-resolution final images. Additional embodiments of the present invention employ hierarchical image-processing techniques to further resolve and interpret disambiguated images.
    • 本发明的实施例涉及成像技术,特别涉及一种随时间检测相对较弱信号的成像系统,并且使用所检测的信号来确定信号发射器的位置。 本发明的具体实施方案涉及用于成像荧光团标记的样品的方法和系统,以便以明显大于与光学显微镜相关联的衍射限制分辨率的分辨率产生样品的图像。 本发明的实施例采用重叠 - 发射 - 图像消歧以允许从密集布置的发射器收集数据,这显着减少用于产生中间图像的数据收集时间以及计算构建高分辨率所需的中间图像的数量 最终图像。 本发明的另外的实施例采用分层图像处理技术来进一步解析和解释消歧图像。
    • 4. 发明申请
    • CALIBRATION TARGETS FOR MICROSCOPE IMAGING
    • 用于显微镜成像的校准目标
    • US20130188035A1
    • 2013-07-25
    • US13876515
    • 2011-09-29
    • Paul C. Goodwin
    • Paul C. Goodwin
    • G02B21/36G02B21/34
    • G02B21/367G02B21/34G02B21/365
    • This disclosure is directed to optical microscope calibration devices that can be used with optical microscopes to adjust the microscope imaging parameters so that images of samples can be obtained below the diffraction limit. The microscope calibration devices include at least one calibration target. Each calibration target includes a number of features with dimensions below the diffraction limit of a microscope objective. Separate color component diffraction limited images of one of the calibration targets are obtained for a particular magnification. The color component images can be combined and image processed to obtain a focused and non-distorted image of the calibration target. The parameters used to obtain the focused and non-distorted image of the calibration target can be used to obtain focused and non-distorted images of a sample for the same magnification by using the same parameters.
    • 本公开涉及可用于光学显微镜以调整显微镜成像参数的光学显微镜校准装置,使得可以在衍射极限以下获得样品的图像。 显微镜校准装置包括至少一个校准目标。 每个校准目标包括尺寸低于显微镜物镜的衍射极限的许多特征。 对于特定的放大倍率,可获得校准目标之一的独立颜色分量衍射限制图像。 可以组合颜色分量图像并进行图像处理,以获得校准目标的聚焦和非失真图像。 用于获得校准目标的聚焦和非失真图像的参数可以用于通过使用相同的参数来获得相同放大倍率的样本的聚焦和非失真图像。
    • 5. 发明申请
    • SYSTEM AND METHOD FOR DENSE-STOCHASTIC-SAMPLING IMAGING
    • 用于渗透 - 采样成像的系统和方法
    • US20110149097A1
    • 2011-06-23
    • US12751816
    • 2010-03-31
    • Gaudenz DanuserPaul C. Goodwin
    • Gaudenz DanuserPaul C. Goodwin
    • H04N5/228G01J1/58
    • G01N21/6428G01N21/636G01N21/6458G01N2021/6415G01N2021/6419G01N2201/126G02B21/365G02B21/367G06T3/4053
    • Embodiments of the present invention are directed to imaging technologies, and, in particular, to an imaging system that detects relatively weak signals, over time, and that uses the detected signals to determine the positions of signal emitters. Particular embodiments of the present invention are directed to methods and systems for imaging fluorophore-labeled samples in order to produce images of the sample at resolutions significantly greater than the diffraction-limited resolution associated with optical microscopy. Embodiments of the present invention employ overlapping-emitter-image disambiguation to allow data to be collected from densely arranged emitters, which significantly decreases the data-collection time for producing intermediate images as well as the number of intermediate images needed to computationally construct high-resolution final images. Additional embodiments of the present invention employ hierarchical image-processing techniques to further resolve and interpret disambiguated images.
    • 本发明的实施例涉及成像技术,特别涉及一种随时间检测相对较弱信号的成像系统,并且使用所检测的信号来确定信号发射器的位置。 本发明的具体实施方案涉及用于成像荧光团标记的样品的方法和系统,以便以明显大于与光学显微镜相关联的衍射限制分辨率的分辨率产生样品的图像。 本发明的实施例采用重叠 - 发射 - 图像消歧以允许从密集布置的发射器收集数据,这显着减少用于产生中间图像的数据收集时间以及计算构建高分辨率所需的中间图像的数量 最终图像。 本发明的另外的实施例采用分层图像处理技术来进一步解析和解释消歧图像。
    • 8. 发明授权
    • System and method for dense-stochastic-sampling imaging
    • 密集随机抽样成像的系统和方法
    • US08237786B2
    • 2012-08-07
    • US12751816
    • 2010-03-31
    • Gaudenz DanuserPaul C. Goodwin
    • Gaudenz DanuserPaul C. Goodwin
    • H04N9/47H04N13/04
    • G01N21/6428G01N21/636G01N21/6458G01N2021/6415G01N2021/6419G01N2201/126G02B21/365G02B21/367G06T3/4053
    • Embodiments of the present invention are directed to imaging technologies, and, in particular, to an imaging system that detects relatively weak signals, over time, and that uses the detected signals to determine the positions of signal emitters. Particular embodiments of the present invention are directed to methods and systems for imaging fluorophore-labeled samples in order to produce images of the sample at resolutions significantly greater than the diffraction-limited resolution associated with optical microscopy. Embodiments of the present invention employ overlapping-emitter-image disambiguation to allow data to be collected from densely arranged emitters, which significantly decreases the data-collection time for producing intermediate images as well as the number of intermediate images needed to computationally construct high-resolution final images. Additional embodiments of the present invention employ hierarchical image-processing techniques to further resolve and interpret disambiguated images.
    • 本发明的实施例涉及成像技术,特别涉及一种随时间检测相对较弱信号的成像系统,并且使用所检测的信号来确定信号发射器的位置。 本发明的具体实施方案涉及用于成像荧光团标记的样品的方法和系统,以便以明显大于与光学显微镜相关联的衍射限制分辨率的分辨率产生样品的图像。 本发明的实施例采用重叠 - 发射 - 图像消歧以允许从密集布置的发射器收集数据,这显着减少用于产生中间图像的数据收集时间以及计算构建高分辨率所需的中间图像的数量 最终图像。 本发明的另外的实施例采用分层图像处理技术来进一步解析和解释消歧图像。
    • 10. 发明授权
    • Image metrics in the statistical analysis of DNA microarray data
    • DNA微阵列数据统计分析中的图像度量
    • US06862363B2
    • 2005-03-01
    • US09770833
    • 2001-01-25
    • Carl S. BrownPaul C. Goodwin
    • Carl S. BrownPaul C. Goodwin
    • G01N33/53G01N37/00G06K9/00
    • G06K9/00G06T7/0012G06T7/41G06T2207/30072
    • Expression profiling using DNA microarrays is an important new method for analyzing cellular physiology. In “spotted” microarrays, fluorescently labeled cDNA from experimental and control cells is hybridized to arrayed target DNA and the arrays imaged at two or more wavelengths. Statistical analysis is performed on microarray images and show that non-additive background, high intensity fluctuations across spots, and fabrication artifacts interfere with the accurate determination of intensity information. The probability density distributions generated by pixel-by-pixel analysis of images can be used to measure the precision with which spot intensities are determined. Simple weighting schemes based on these probability distributions are effective in improving significantly the quality of microarray data as it accumulates in a multi-experiment database. Error estimates from image-based metrics should be one component in an explicitly probabilistic scheme for the analysis of DNA microarray data.
    • 使用DNA微阵列进行表达谱分析是分析细胞生理学的重要新方法。 在“斑点”微阵列中,来自实验和对照细胞的荧光标记的cDNA与排列的靶DNA杂交,并且阵列以两个或更多个波长成像。 在微阵列图像上进行统计分析,并显示非加性背景,斑点高强度波动和制造伪影干扰强度信息的准确测定。 通过像素逐像素分析图像生成的概率密度分布可用于测量确定斑点强度的精度。 基于这些概率分布的简单加权方案在微阵列数据在多实验数据库中累积时的质量显着提高是有效的。 基于图像的指标的误差估计应该是用于分析DNA微阵列数据的明确概率方案中的一个组成部分。