会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Porcelain composition with nanosized ceramic oxides
    • US10011533B2
    • 2018-07-03
    • US15311640
    • 2015-12-01
    • PROLEC, S.A. DE C.V.
    • José Eulalio Contreras De LeonEdén Amaral Rodriguez Castellanos
    • C04B35/14C04B35/64H01B3/12
    • The present invention is related to the development of a new formulation of electrical grade porcelain having improved mechanical and dielectric characteristics, and whose primary application is in electrical components, such as electric insulators. This invention has as its main object to provide a new alternative to increase the final properties of an electrical grade porcelain, which is related to the incorporation of suitable concentrations of nanosized ceramic oxides, as part of the initial composition of porcelain paste. This new nanotechnology alternative favors an increase in the final properties of electrical grade porcelain, such as flexural strength or cold rupture modulus, as well as dielectric strength, which is due to the incorporation of ceramic oxides such as alumina (α-Al2O3) and zirconia (ZrO2), in micrometer scale (i.e., less than 100 nanometers), favorably modify the microstructure of the base porcelain. Mechanical strength, specifically the flexural strength at three points, of the porcelain compositions of the present invention is up to 38% greater than a silica based conventional porcelain composition. Furthermore, the insulating ability of the composition of this invention is up to 30% above the value of the reference siliceous porcelain. Another important aspect of this invention is based on the concept that the ceramic nano-oxides of (α-Al2O3) and zirconia (ZrO2) strengthen the microstructure of siliceous porcelain, since the amount of crystalline phase increases and therefore the amorphous phase is reduced. Furthermore, the ceramic nano-oxides favor the increase in the concentration of the crystalline mullite phase (3Al2O3.2SiO2) in the microstructure, which is known to benefit the mechanical performance of triaxial porcelains.