会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Starter control valve failure prediction machine to predict and trend starter control valve failures in gas turbine engines using a starter control valve health prognostic, program product and related methods
    • 起动控制阀故障预测机预测和趋势使用启动器控制阀健康预测的燃气轮机发动机控制阀故障,程序产品及相关方法
    • US08370045B2
    • 2013-02-05
    • US12541811
    • 2009-08-14
    • Hai QiuNaresh Sundaram IyerWeizhong Yan
    • Hai QiuNaresh Sundaram IyerWeizhong Yan
    • G06F19/00
    • F02C7/26F01D19/00F02C7/262F05D2270/708
    • Starter control valve failure prediction machines, systems, program products, and computer implemented methods to predict and trend starter control valve failures in gas turbine engines using a starter control valve health prognostic and to make predictions of starter control valve failures, are provided. A computer implemented method according to an embodiment of the present invention can include the steps of generating a continuous starter control valve deterioration trend function responsive to a plurality of health indices derived from gas turbine engine startup data downloaded from gas turbine engine sensors for a plurality of startups and analyzing the continuous starter control valve deterioration trend function to identify potential starter control valve failure points where the points on the starter control valve deterioration trend function correlate to a starter control valve health prognostic responsive to historic gas turbine engine startup data downloaded from gas turbine engine sensors.
    • 提供了起动器控制阀故障预测机,系统,程序产品和计算机实现的方法来预测和趋势,使用启动器控制阀健康预测的燃气涡轮发动机中的起动器控制阀故障并预测起动器控制阀故障。 根据本发明的实施例的计算机实现的方法可以包括以下步骤:响应于从燃气涡轮发动机传感器下载的燃气涡轮发动机启动数据导出的多个健康指数,产生连续起动器控制阀恶化趋势功能,用于多个 启动和分析连续起动器控制阀恶化趋势功能,以识别潜在的起动器控制阀故障点,其中起动器控制阀的点变化趋势功能与启动器控制阀的健康预测相关,响应于从燃气轮机下载的历史燃气涡轮发动机启动数据 发动机传感器。
    • 7. 发明申请
    • Starter Control Valve Failure Prediction Machine To Predict and Trend Starter Control Valve Failures In Gas Turbine Engines Using A Starter Control Valve Health Prognostic, Program Product and Related Methods
    • 起动器控制阀故障预测机预测和趋势起动器控制阀故障在使用起动器控制阀的燃气轮机发动机健康预测,程序产品和相关方法
    • US20110040470A1
    • 2011-02-17
    • US12541811
    • 2009-08-14
    • Hai QiuNaresh Sundaram IyerWeizhong Yan
    • Hai QiuNaresh Sundaram IyerWeizhong Yan
    • G06F19/00
    • F02C7/26F01D19/00F02C7/262F05D2270/708
    • Starter control valve failure prediction machines, systems, program products, and computer implemented methods to predict and trend starter control valve failures in gas turbine engines using a starter control valve health prognostic and to make predictions of starter control valve failures, are provided. A computer implemented method according to an embodiment of the present invention can include the steps of generating a continuous starter control valve deterioration trend function responsive to a plurality of health indices derived from gas turbine engine startup data downloaded from gas turbine engine sensors for a plurality of startups and analyzing the continuous starter control valve deterioration trend function to identify potential starter control valve failure points where the points on the starter control valve deterioration trend function correlate to a starter control valve health prognostic responsive to historic gas turbine engine startup data downloaded from gas turbine engine sensors.
    • 提供了起动控制阀故障预测机,系统,程序产品和计算机实现的方法来预测和趋势,使用启动器控制阀健康预测的燃气轮机发动机起动器控制阀故障,并预测起动器控制阀故障。 根据本发明的实施例的计算机实现的方法可以包括以下步骤:响应于从燃气涡轮发动机传感器下载的燃气涡轮发动机启动数据导出的多个健康指数,产生连续起动器控制阀恶化趋势功能,用于多个 启动和分析连续起动器控制阀恶化趋势功能,以识别潜在的起动器控制阀故障点,其中起动器控制阀的点变化趋势功能与启动器控制阀的健康预测相关,响应于从燃气轮机下载的历史燃气涡轮发动机启动数据 发动机传感器。
    • 8. 发明申请
    • SYSTEM AND PROCESS FOR A FUSION CLASSIFICATION FOR INSURANCE UNDERWRITING SUITABLE FOR USE BY AN AUTOMATED SYSTEM
    • 用于保险分类的系统和程序,适用于自动系统使用的保险
    • US20090048876A1
    • 2009-02-19
    • US12131545
    • 2008-06-02
    • Piero Patrone BonissoneKareem Sherif AGGOURRajesh Venkat SUBBUWeizhong YANNaresh Sundaram IYERAnindya CHAKRABORTY
    • Piero Patrone BonissoneKareem Sherif AGGOURRajesh Venkat SUBBUWeizhong YANNaresh Sundaram IYERAnindya CHAKRABORTY
    • G06Q40/00G06Q10/00
    • G06Q40/08G06Q40/00
    • A method and system for fusing a collection of classifiers used for an automated insurance underwriting system and/or its quality assurance is described. Specifically, the outputs of a collection of classifiers are fused. The fusion of the data will typically result in some amount of consensus and some amount of conflict among the classifiers. The consensus will be measured and used to estimate a degree of confidence in the fused decisions. Based on the decision and degree of confidence of the fusion and the decision and degree of confidence of the production decision engine, a comparison module may then be used to identify cases for audit, cases for augmenting the training/test sets for re-tuning production decision engine, cases for review, or may simply trigger a record of its occurrence for tracking purposes. The fusion can compensate for the potential correlation among the classifiers. The reliability of each classifier can be represented by a static or dynamic discounting factor, which will reflect the expected accuracy of the classifier. A static discounting factor is used to represent a prior expectation about the classifier's reliability, e.g., it might be based on the average past accuracy of the model, while a dynamic discounting is used to represent a conditional assessment of the classifier's reliability, e.g., whenever a classifier bases its output on an insufficient number of points it is not reliable.
    • 描述用于融合用于自动保险承保系统的分类器集合和/或其质量保证的方法和系统。 具体来说,分类器的集合的输出被融合。 数据的融合通常会导致一些共识和分类器之间的一些冲突。 共识将被测量并用于估计融合决策的信心程度。 根据融合的决定和信心程度以及生产​​决策引擎的决策和决策程度,然后可以使用比较模块来识别审计案例,增加用于重新调整生产的培训/测试集的案例 决策引擎,审查案例,或者可以简单地触发其发生记录以进行跟踪。 融合可以补偿分类器之间的潜在相关性。 每个分类器的可靠性可以由静态或动态折扣因子表示,这将反映分类器的预期准确性。 静态折扣因子用于表示对分类器的可靠性的先前期望,例如,可以基于模型的平均过去精度,而使用动态贴现来表示分类器的可靠性的条件评估,例如,每当 分类器的输出基于不可靠的点数不足。