会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • Tactile Tile Vocalization
    • 触觉瓦片鸣声
    • US20110300516A1
    • 2011-12-08
    • US12791962
    • 2010-06-02
    • Daniel WigdorMeredith June MorrisJarrod LombardoAnnuska PerkinsSean HayesCurtis Douglas Aumiller
    • Daniel WigdorMeredith June MorrisJarrod LombardoAnnuska PerkinsSean HayesCurtis Douglas Aumiller
    • G06K9/00
    • G09B21/007G06K9/00993
    • Braille symbols are automatically read aloud, to aid in learning or using Braille. More generally, a tile which bears a tactile symbol and a corresponding visual symbol is placed in a sensing area, automatically distinguished from other tiles, and vocalized. The tile is sensed and distinguished from other tiles based on various signal mechanisms, or by computer vision analysis of the tile's visual symbol. Metadata is associated with the tile. Additional placed tiles are similarly sensed, identified, and vocalized. When multiple tiles are placed in the sensing area, they are vocalized individually, and an audible phrase spelled by their arrangement of tactile symbols is also produced. A lattice is provided with locations for receiving tiles. Metadata are associated with lattice locations. Tile placement is used to control an application program which responds to tile identifications.
    • 盲文符号自动朗读,以帮助学习或使用盲文。 更一般地,将具有触觉符号和对应的视觉符号的瓦片放置在感测区域中,与其他瓦片自动区分开并发出声音。 基于各种信号机制,或者通过对该瓦片的视觉符号的计算机视觉分析来检测瓦片并将其与其它瓦片区分开。 元数据与瓦片相关联。 附加放置的瓦片类似地被感测,识别和发声。 当多个瓦片被放置在感测区域中时,它们被单独发出声音,并且还产生了由它们的触觉符号排列而拼写的听觉短语。 网格设有接收瓦片的位置。 元数据与网格位置相关联。 平铺位置用于控制响应图块标识的应用程序。
    • 5. 发明申请
    • SYSTEM AND INTERFACE FOR CO-LOCATED COLLABORATIVE WEB SEARCH
    • 用于协同协作网络搜索的系统和界面
    • US20090204902A1
    • 2009-08-13
    • US12029616
    • 2008-02-12
    • Meredith June MorrisSaleema Amershi
    • Meredith June MorrisSaleema Amershi
    • G06F3/00G06F17/30
    • G06F17/30
    • Systems and methods are provided to perform collaborative retrieval, communication, and navigation of electronic content in a co-located environment. In an illustrative implementation, a collaborative content environment comprises a collaborative content interface engine, and an instruction set comprising at least one instruction providing instructions to the collaborative content interface engine to process data representative of inputs from two or more cooperating interface devices to allow for the retrieval, communication, search, and navigation of electronic content. In the illustrative implementation, the collaborative content interface engine can present retrieved, communicated, searched, and/or navigated data according to a selected display paradigm. The display paradigm can include one or more display portions of a display pane comprising data responsive to the inputs received from the two or more cooperating interface devices.
    • 提供系统和方法以在共处环境中执行电子内容的协同检索,通信和导航。 在说明性实现中,协作内容环境包括协作内容接口引擎,以及包括向协作内容接口引擎提供指令的至少一个指令的指令集,以处理表示来自两个或多个合作接口设备的输入的数据,以允许 电子内容的检索,通信,搜索和导航。 在说明性实现中,协作内容接口引擎可以根据所选择的显示范例呈现检索到的,传达的,搜索的和/或导航的数据。 显示范例可以包括显示窗格的一个或多个显示部分,其包括响应于从两个或多个协作界面设备接收的输入的数据。
    • 6. 发明申请
    • Exploratory Search Technique
    • 探索性搜索技术
    • US20080319975A1
    • 2008-12-25
    • US11767142
    • 2007-06-22
    • Daniel Scott MorrisMeredith June MorrisGina Danielle VenoliaRyen William WhiteEric HorvitzSteven M. Drucker
    • Daniel Scott MorrisMeredith June MorrisGina Danielle VenoliaRyen William WhiteEric HorvitzSteven M. Drucker
    • G06F17/30
    • G06F3/048G06F16/951G06F2203/04803
    • A technique for the creation of synthesized results from multi-query searches to provide more relevant information to the user in a more useful format and to discard or reduce in relevancy information that is not so useful. It allows a user to define the boundaries of the exploratory search before it starts or retroactively define which queries belong to the search. It can imply which queries belong to the search based on parameters in the queries or results. It also provides mechanisms for supporting exploratory searches including: saving/restoring search context; search-specific query history; a “keepers” bin for storing useful results; elimination of redundant results; re-ranking of common search results; integration of searching with navigation; pivoting on search results; collaboration among multiple searchers; user-generated content; generation of hypotheses; re-executing queries and executing standing queries; multi-monitor searching and automatic preparation of search summaries. User interfaces for conducting multi-query searches are also provided.
    • 一种用于从多查询搜索创建合成结果的技术,以更有用的格式向用户提供更多的相关信息,并丢弃或减少不那么有用的相关性信息。 它允许用户在开始之前定义探索性搜索的边界,或者追溯地定义哪些查询属于搜索。 它可以暗示哪些查询属于基于查询或结果中的参数的搜索。 它还提供支持探索性搜索的机制,包括:保存/恢复搜索环境; 搜索专用查询记录; 用于存储有用结果的“管理员”仓; 消除冗余结果; 共同搜索结果重新排序; 搜索与导航的整合; 在搜索结果上转动; 多个搜索者之间的协作; 用户生成内容; 一代假设; 重新执行查询并执行常规查询; 多监视搜索和自动准备搜索摘要。 还提供了用于进行多查询搜索的用户界面。
    • 10. 发明申请
    • Credibility Information in Returned Web Results
    • 返回Web结果中的可信度信息
    • US20120296918A1
    • 2012-11-22
    • US13110117
    • 2011-05-18
    • Meredith June MorrisJulia Schwarz
    • Meredith June MorrisJulia Schwarz
    • G06F17/30
    • G06F16/9535G06F16/332G06F16/3331
    • The subject disclosure is directed towards using credibility-related data in conjunction with servicing a web request such as a search query or a request for page content. The credibility-related data may be used to convey information to a user indicative of a level of credibility, such as to view credibility information with each search result, or in association with returned web page content. The credibility-related data may be used to rank, re-rank and/or filter search results. Also described is extracting credibility-related feature data from search-related data and web pages, and using the feature data with a dataset of credibility-rated pages to learn/train relative feature weights in a credibility model used by the search engine.
    • 主题公开涉及使用可信性相关数据结合服务诸如搜索查询或页面内容的请求的网络请求。 可信度相关数据可以用于向指示信用级别的用户传达信息,诸如查看具有每个搜索结果的可信度信息,或者与返回的网页内容相关联。 可信度相关数据可用于对搜索结果进行排序,重新排序和/或过滤。 还描述了从搜索相关数据和网页中提取可信性特征数据,并且使用特征数据与可信度级页面的数据集来学习/训练由搜索引擎使用的可信度模型中的相对特征权重。