会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Generation of terahertz radiation in orientation-patterned semiconductors
    • 在定向图案化的半导体中产生太赫兹辐射
    • US07339718B1
    • 2008-03-04
    • US11357722
    • 2006-02-17
    • Konstantin L. VodopyanovYun-Shik LeeVladimir G. KozlovMartin M. Fejer
    • Konstantin L. VodopyanovYun-Shik LeeVladimir G. KozlovMartin M. Fejer
    • G02F1/35G02F2/02
    • G02F1/39G02F1/3558G02F2203/13
    • A method for generating THz radiation comprises illuminating a semiconductor crystal with an optical pulse train. The semiconductor crystal comprises alternating parallel crystal domains, with each domain having a crystal orientation inverted with respect to adjacent domains. The optical pulse train propagates substantially perpendicularly relative to domain boundaries in the semiconductor crystal. The THz radiation is generated from the optical pulse train by optical down-conversion mediated by the semiconductor crystal. Optical path lengths through the crystal domains at least in part determine a frequency of the generated THz radiation. THz generation efficiency may be enhanced by placing the semiconductor crystal within an external resonant cavity, by placing the semiconductor crystal within a laser cavity, or by placing the semiconductor crystal within an OPO cavity. The semiconductor crystal may comprise zinc-blende, III-V, or II-VI semiconductor.
    • 用于产生太赫兹辐射的方法包括用光脉冲串照射半导体晶体。 半导体晶体包括交替的平行晶体畴,每个畴具有相对于相邻畴反转的晶体取向。 光脉冲串相对于半导体晶体中的畴边界基本垂直地传播。 通过由半导体晶体介导的光学下变频从光脉冲串产生太赫兹辐射。 通过晶体域的光路长度至少部分地确定所产生的太赫兹辐射的频率。 通过将半导体晶体放置在激光腔内,或通过将半导体晶体放置在OPO腔内,可以将半导体晶体放置在外部谐振腔内来提高太赫兹发生效率。 半导体晶体可以包括闪锌矿,III-V或II-VI半导体。
    • 2. 发明授权
    • Nonlinear frequency mixer using quasi-phase-matching gratings having beam-modifying patterns
    • 使用具有光束修改图案的准相位匹配光栅的非线性混频器
    • US06930821B2
    • 2005-08-16
    • US10440490
    • 2003-05-16
    • Jonathan R. KurzMartin M. Fejer
    • Jonathan R. KurzMartin M. Fejer
    • G02F1/37G02F1/377G02F1/39
    • G02F1/3775G02F2001/372
    • A method and a nonlinear frequency mixer employing the method to generate at least one output light from at least one input light with the aid of a quasi-phase-matching (QPM) grating for quasi-phase-matching the input and output light involved in a nonlinear frequency mixing operation such as three-wave mixing, four-wave mixing or other nonlinear operation mediated by a susceptibility of the nonlinear optical material. The QPM grating has a beam-modifying pattern with features for wave front shaping. More specifically, the features shape the wave fronts of the output light by diffraction or phase front shaping to thereby modify its propagation. This modification of propagation can be used to steer, focus, defocusing, split and/or collimate the output light. The features themselves can have various geometric shapes and sizes, even on the order of the wavelength of the output light, and they can include domains exhibiting a nonlinear optical susceptibility χ, such as the second-order susceptibility χ(2), domain edges, and/or spacings between such domains.
    • 一种采用该方法的方法和非线性频率混合器,用于借助于准相位匹配(QPM)光栅从至少一个输入光产生至少一个输出光,以准相相匹配参与的输入和输出光 由非线性光学材料的磁化率介导的三波混频,四波混频或其他非线性运算的非线性频率混合操作。 QPM光栅具有波束修正图案,具有用于波前成形的特征。 更具体地,这些特征通过衍射或相位前置成形来形成输出光的波前,从而改变其传播。 传播的这种修改可用于引导,聚焦,散焦,分离和/或校准输出光。 特征本身可以具有各种几何形状和尺寸,即使在输出光的波长的数量级上,它们也可以包括显示出非线性光学敏感性chi的畴,例如二次磁化率chi(2) / SUP>,域边缘和/或这些域之间的间隔。
    • 4. 发明授权
    • Electric field domain patterning
    • 电场域图案化
    • US5800767A
    • 1998-09-01
    • US307867
    • 1994-09-16
    • Robert L. ByerMartin M. FejerGregory D. MillerLawrence E. Myers
    • Robert L. ByerMartin M. FejerGregory D. MillerLawrence E. Myers
    • G02F1/355B29C71/00
    • G02F1/3558
    • A method of domain patterning a body of ferroelectric material. The method includes the steps of adhering spaced conducting strips to a surface of said body; covering portions of said surface of said body between said strips with material which is insulative relative to electric current produced when an electric field configuration is created in said body and which controls the formation of fringe electric field components in said material; and applying potentials simultaneously to said conducting strips and to a surface of said insulative material to create an electric field configuration in said body whereby said strips define said electric field configuration within said body and wherein said insulating material between said strips defines a potential within said body which is generally the same as the potential applied to said conducting strips.
    • 铁电材料体的域图案化方法。 该方法包括将间隔开的导电条粘合到所述主体的表面上的步骤; 在所述条带之间覆盖所述主体的所述表面的部分,所述材料相对于在所述主体中产生电场结构而产生的电流是绝缘的,并且控制所述材料中的边缘电场分量的形成; 以及将电位同时施加到所述导电条和所述绝缘材料的表面以在所述主体中产生电场结构,由此所述条限定所述主体内的所述电场结构,并且其中所述条之间的所述绝缘材料限定所述主体内的电位 其通常与施加到所述导电条上的电位相同。
    • 9. 发明授权
    • Method of amplifying optical signals using erbium-doped materials with extremely broad bandwidths
    • 使用具有极宽带宽的铒掺杂材料放大光信号的方法
    • US06469825B1
    • 2002-10-22
    • US09628731
    • 2000-07-28
    • Michel J. F. DigonnetHiroshi NoguchiMartin M. Fejer
    • Michel J. F. DigonnetHiroshi NoguchiMartin M. Fejer
    • H01S300
    • C03C3/062C03C3/125C03C13/046C03C13/048H01S3/0637H01S3/06716H01S3/06754H01S3/1608H01S3/1618H01S3/1638H01S3/1643
    • In a method of amplifying optical input signals over a wide bandwidth, the optical input signals are applied to an optical waveguide made from a rare-earth-doped amorphous yttrium aluminum oxide material (e.g., erbium-doped yttrium aluminum oxide material). The optical input signals include optical signals having wavelengths shorter than 1,520 nanometers and optical signals having wavelengths longer than 1,610 nanometers. Preferably, the wavelengths range from as short as approximately 1,480 nanometers to as long as approximately 1,650 nanometers. Pump light is applied to the optical waveguide to cause the waveguide to provide optical gain to the optical input signals. The optical gain causes the optical signals to be amplified within the waveguide to provide amplified optical signals over the extended range from approximately 1,480 nanometers to approximately 1,650 nanometers, including, in particular, optical signals having wavelengths shorter than 1,520 nanometers and optical signals having wavelengths longer than 1,610 nanometers. Alternatively, the wavelengths of the optical input signals may be in the range from approximately 1,480 nanometers to approximately 1,565 nanometers. As a further alternative, the wavelengths of the optical input signals may be in the range from approximately 1,565 nanometers to approximately 1,650 nanometers.
    • 在宽带宽放大光输入信号的方法中,光输入信号被施加到由稀土掺杂的无定形钇铝氧化物材料(例如掺铒氧化铝材料)制成的光波导。 光输入信号包括波长短于1520纳米的光信号和波长长于1610纳米的光信号。 优选地,波长范围从约1,480纳米到长达约1,650纳米。 泵浦光被施加到光波导以使波导对光输入信号提供光增益。 光学增益使得光信号在波导内被放大,以在从大约1,480纳米到大约1,650纳米的扩展范围内提供放大的光信号,包括特别是具有短于1,520纳米的波长的光信号和具有波长更长的光信号 比1,610纳米。 或者,光输入信号的波长可以在从大约1,480纳米到大约1,565纳米的范围内。 作为另一替代方案,光输入信号的波长可以在大约1565纳米到大约1,650纳米的范围内。