会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Variable Discretization Method For Flow Simulation On Complex Geological Models
    • 用于复杂地质模型的流动模拟的可变离散化方法
    • US20130231907A1
    • 2013-09-05
    • US13825758
    • 2011-08-12
    • Yahan YangLinfeng BiWeidong GuoRossen ParashkevovXiaohui Wu
    • Yahan YangLinfeng BiWeidong GuoRossen ParashkevovXiaohui Wu
    • G06F17/50
    • G06F17/5018G01V99/005G06F2217/16
    • A variable discretization method for general multiphase flow simulation in a producing hydrocarbon reservoir. For subsurface regions for which a regular or Voronoi computational mesh is suitable, a finite difference/finite volume method (“FDM”) is used to discretize numerical solution of the differential equations governing fluid flow (101). For subsurface regions with more complex geometries, a finite element method (“FEM”) is used. The invention combines FDM and FEM in a single computational framework (102). Mathematical coupling at interfaces between different discretization regions is accomplished by decomposing individual phase velocity into an averaged component and a correction term. The averaged velocity component may be determined from pressure and averaged capillary pressure and other properties based on the discretization method employed, while the velocity correction term may be computed using a multipoint flux approximation type method, which may be reduced to two-point flux approximation for simple grid and permeability fields.
    • 一种用于生产油气藏的一般多相流模拟的可变离散化方法。 对于常规或Voronoi计算网格适合的地下区域,使用有限差分/有限体积法(“FDM”)来离散控制流体流动的微分方程(101)的数值解。 对于具有更复杂几何的地下区域,使用有限元法(“FEM”)。 本发明将FDM和FEM组合在一个单一的计算框架中(102)。 通过将各个相速度分解成平均分量和校正项来实现不同离散区域之间的界面处的数学耦合。 平均速度分量可以基于所采用的离散化方法从压力和平均毛细管压力和其他性质确定,而速度校正项可以使用多点通量近似方法来计算,该方法可以减少到两点通量近似 简单网格和渗透性领域。
    • 5. 发明申请
    • Fault Removal In Geological Models
    • 地质模型中的故障去除
    • US20150293260A1
    • 2015-10-15
    • US14423659
    • 2013-08-23
    • Kaveh GhayourLinfeng BiXiaohui Wu
    • Kaveh GhayourLinfeng BiXiaohui Wu
    • G01V99/00G06F17/10G01V1/28
    • G01V99/005G01V1/282G01V2210/66G06F17/10
    • Method for transforming a discontinuous, faulted subsurface reservoir into a continuous, fault-free space where a complete geological model based on selected geological concepts can be built and updated efficiently. Faults are removed in reverse chronological order (62) to generate a pseudo-physical continuous layered model, which is populated with information according to the selected geological concept (68). The fault removal is posed as an optimal control problem where unknown rigid body transformations and relative displacements on fault surfaces are found such that deformation of the bounding horizons and within the volume near the fault surface are minimized (63). A boundary-element-method discretization in an infinite domain is used, with boundary data imposed only on fault surfaces. The data populated model may then be mapped back to the original faulted domain such that a one-to-one mapping between continuous and faulted spaces may be found to a desired tolerance (72).
    • 将不连续,故障的地下储层变换为连续的无故障空间的方法,其中可以有效地构建和更新基于选定的地质概念的完整的地质模型。 以相反的时间顺序(62)去除故障以产生伪物理连续分层模型,其根据所选择的地质概念填充信息(68)。 故障去除是一个最佳的控制问题,其中发现了未知的刚体变形和断层表面的相对位移,使得边界层的变形和断层附近的体积最小化(63)。 使用无限域中的边界元方法离散化,边界数据仅施加在故障表面上。 然后可以将数据填充模型映射回原始故障域,使得可以发现连续故障空间和故障空间之间的一对一映射达到期望的公差(72)。
    • 7. 发明申请
    • Handling Domain Discontinuity With The Help of Grid Optimization Techniques
    • 使用网格优化技术的帮助处理域不连续性
    • US20160125555A1
    • 2016-05-05
    • US14868562
    • 2015-09-29
    • Larisa V. BranetsXiaohui WuLinfeng Bi
    • Larisa V. BranetsXiaohui WuLinfeng Bi
    • G06Q50/02G06Q10/06
    • Method for mapping a 3D grid or mesh from a faulted subsurface domain to a continuous design domain, wherein the grid may be used to represent a discrete model of a subsurface material property (such as permeability) to use, for example, in a reservoir simulator. The mapping is geometry-based, not physics-based. The mapping is determined by an iterative optimization procedure designed to penalize deformation of tessellated mesh cells (703) in the design domain compared to their geometric quality in the faulted domain (701), but subject to stitching constraints (702) appearing as a penalty term or Lagrange multiplier term in the optimization objective function to influence the final mesh to co-locate pairs of points identified on opposite sides of a fault as having been located together before the fault occurred.
    • 用于将3D网格或网格从故障的地下区域映射到连续设计域的方法,其中网格可以用于表示使用例如在储层模拟器中的地下材料属性(例如渗透性)的离散模型 。 映射是基于几何的,而不是基于物理的。 映射由迭代优化过程确定,该迭代优化过程设计用于惩罚设计域中的镶嵌网格单元(703)的变形,与其在有缺陷域(701)中的几何质量相比,但是受拼接限制(702)作为惩罚项 或拉格朗日乘数项,以影响最终网格以将故障相对侧上识别的点对在故障发生之前位于一起。