会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Methodology for implementing a vocabulary set for use in a speech recognition system
    • 用于实现语音识别系统中使用的词汇集的方法
    • US06970818B2
    • 2005-11-29
    • US10097962
    • 2002-03-14
    • Xavier Menedez-PidalLex S. Olorenshaw
    • Xavier Menedez-PidalLex S. Olorenshaw
    • G10L15/04G10L15/10G10L15/12
    • G10L15/10
    • The present invention comprises a methodology for implementing a vocabulary set for use in a speech recognition system, and may preferably include a recognizer for analyzing utterances from the vocabulary set to generate N-best lists of recognition candidates. The N-best lists may then be utilized to create an acoustical matrix configured to relate said utterances to top recognition candidates from said N-best lists, as well as a lexical matrix configured to relate the utterances to the top recognition candidates from the N-best lists only when second-highest recognition candidates from the N-best lists are correct recognition results. An utterance ranking may then preferably be created according to composite individual error/accuracy values for each of the utterances. The composite individual error/accuracy values may preferably be derived from both the acoustical matrix and the lexical matrix. Lowest-ranked utterances from the foregoing utterance ranking may preferably be repeatedly eliminated from the vocabulary set when a total error/accuracy value for all of the utterances fails to exceed a predetermined threshold value.
    • 本发明包括一种用于实现在语音识别系统中使用的词汇集的方法,并且可以优选地包括用于从词汇集分析话语以产生N个最佳识别候选列表的识别器。 然后可以利用N个最佳列表来创建声学矩阵,该声学矩阵被配置为将所述话语与来自所述N个最佳列表的顶部识别候选相关联,以及被配置为将话语与来自N个最佳列表的顶部识别候选相关联的词汇矩阵, 只有当N最佳列表中第二高的识别候选者才能得到正确的识别结果时,才能列出最佳列表。 然后可以根据每个话语的复合单个错误/准确度值优选地产生话语排名。 复合单个误差/精度值可以优选地从声学矩阵和词汇矩阵两者导出。 当所有话语的总误差/准确度值不能超过预定阈值时,可以从词汇集中重复地从上述话语排名中排除最低排名的话语。
    • 3. 发明授权
    • System and method for speech recognition using an enhanced phone set
    • 使用增强型电话机进行语音识别的系统和方法
    • US07139708B1
    • 2006-11-21
    • US09369031
    • 1999-08-04
    • Lex S. OlorenshawMariscela Amador-Hernandez
    • Lex S. OlorenshawMariscela Amador-Hernandez
    • G10L15/06
    • G10L15/187G10L15/065G10L2015/025
    • A system and method for speech recognition using an enhanced phone set comprises speech data, an enhanced phone set, and a transcription generated by a transcription process. The transcription process selects appropriate phones from the enhanced phone set to represent acoustic-phonetic content of the speech data. The enhanced phone set includes base-phones and composite-phones. A phone dataset includes the speech data and the transcription. The present invention also comprises a transformer that applies transformation rules to the phone dataset to produce a transformed phone dataset. The transformed phone dataset may be utilized in training a speech recognizer, such as a Hidden Markov Model. Various types of transformation rules may be applied to the phone dataset of the present invention to find an optimum transformed phone dataset for training a particular speech recognizer.
    • 用于使用增强电话机的语音识别的系统和方法包括语音数据,增强电话机和由转录过程产生的转录。 转录过程从增强型电话机中选择合适的电话来表示语音数据的声音语音内容。 增强型手机包括基本电话和复合电话。 电话数据集包括语音数据和转录。 本发明还包括对电话数据集应用变换规则以产生变换的电话数据集的变压器。 变换的电话数据集可以用于训练语音识别器,例如隐马尔可夫模型。 可以将各种类型的变换规则应用于本发明的电话数据集,以找到用于训练特定语音识别器的最佳变换电话数据集。
    • 5. 发明授权
    • Method and apparatus for a parameter sharing speech recognition system
    • 一种参数共享语音识别系统的方法和装置
    • US6006186A
    • 1999-12-21
    • US953026
    • 1997-10-16
    • Ruxin ChenMiyuki TanakaDuanpei WuLex S. Olorenshaw
    • Ruxin ChenMiyuki TanakaDuanpei WuLex S. Olorenshaw
    • G10L15/14G10L15/18G10L7/08
    • G10L15/142G10L15/148
    • A method and an apparatus for a parameter sharing speech recognition system are provided. Speech signals are received into a processor of a speech recognition system. The speech signals are processed using a speech recognition system hosting a shared hidden Markov model (HMM) produced by generating a number of phoneme models, some of which are shared. The phoneme models are generated by retaining as a separate phoneme model any triphone model having a number of trained frames available that exceeds a prespecified threshold. A shared phoneme model is generated to represent each of the groups of triphone phoneme models for which the number of trained frames having a common biphone exceed the prespecified threshold. A shared phoneme model is generated to represent each of the groups of triphone phoneme models for which the number of trained frames having an equivalent effect on a phonemic context exceed the prespecified threshold. A shared phoneme model is generated to represent each of the groups of triphone phoneme models having the same center context. The generated phoneme models are trained, and shared phoneme model states are generated that are shared among the phoneme models. Shared probability distribution functions are generated that are shared among the phoneme model states. Shared probability sub-distribution functions are generated that are shared among the phoneme model probability distribution functions. The shared phoneme model hierarchy is reevaluated for further sharing in response to the shared probability sub-distribution functions. Signals representative of the received speech signals are generated.
    • 提供了一种用于参数共享语音识别系统的方法和装置。 语音信号被接收到语音识别系统的处理器中。 语音信号使用一个语音识别系统进行处理,该语音识别系统承载通过生成许多音素模型而产生的共享隐马尔可夫模型(HMM),其中一些是共享的。 音素模型是通过保留作为单独音素模型的任何具有超过预定阈值的已训练帧数的三音模型而产生的。 生成共享音素模型以表示具有共同biphone的经过训练的帧的数量超过预定阈值的三音节音素模型组中的每一组。 生成共享音素模型以表示三音节音素模型中的每一组,其中对音素上下文具有等效影响的经过训练的帧的数量超过预先指定的阈值。 生成共享音素模型以表示具有相同中心上下文的三音节音素模型组中的每一组。 生成的音素模型被训练,并且生成在音素模型中共享的共享音素模型状态。 生成在音素模型状态之间共享的共享概率分布函数。 生成在音素模型概率分布函数中共享的共享概率子分布函数。 共享音素模型层次结构被重新评估以响应于共享概率子分布函数进一步共享。 生成表示接收到的语音信号的信号。