会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Inferring beacon positions based on spatial relationships
    • 基于空间关系推测信标位置
    • US08237612B2
    • 2012-08-07
    • US12711889
    • 2010-02-24
    • Jyh-Han LinJohn Charles KrummArjun Sundararajan
    • Jyh-Han LinJohn Charles KrummArjun Sundararajan
    • G01S3/02
    • G01S5/0236G01S5/0036
    • Estimating positions of beacons based on spatial relationships among neighboring beacons. Beacon reference data defining positions of beacons is stored from beacon fingerprints observed by devices (e.g., enabled with global positioning system receivers). For a received beacon fingerprint having at least one beacon for which the beacon reference data is missing (e.g., from a device without a GPS receiver), beacons in the received beacon fingerprint for which beacon reference data is available are identified. Based on these identified beacons, the missing beacon reference data is calculated. In some embodiments, a set of spatially diverse beacons is selected from the identified beacons prior to calculating the beacon reference data.
    • 根据相邻信标之间的空间关系估计信标的位置。 信标参考数据定义信标的位置从设备观测到的信标指纹(例如,使用全球定位系统接收机启用)存储。 对于具有信标参考数据丢失的至少一个信标(例如,来自没有GPS接收机的设备)的接收信标指纹,识别信标参考数据可用的接收信标指纹中的信标。 基于这些标识的信标,计算丢失的信标参考数据。 在一些实施例中,在计算信标参考数据之前,从所标识的信标中选择一组空间多样的信标。
    • 6. 发明申请
    • FILTERING AND CLUSTERING CROWD-SOURCED DATA FOR DETERMINING BEACON POSITIONS
    • 滤波和聚类用于确定信标位置的CROWD-SOURCED数据
    • US20120184292A1
    • 2012-07-19
    • US13185520
    • 2011-07-19
    • Jyh-Han LinSindhura BandhakaviPradipta Kumar Basu
    • Jyh-Han LinSindhura BandhakaviPradipta Kumar Basu
    • H04W24/00
    • H04W64/003H04W24/10H04W64/00
    • Embodiments analyze crowd-sourced data to identify a moved or moving beacon. The crowd-sourced data involving a particular beacon is filtered based on a cluster start time associated with the beacon. A clustering analysis groups the filtered crowd-sourced data for the beacon into a plurality of clusters based on spatial distance. Timestamps associated with the crowd-sourced data in the clusters are compared to select one of the clusters. The crowd-sourced data associated with the selected cluster is used to determine position information for the moved beacon. The cluster start time for the beacon is adjusted based on the earliest timestamp associated with the positioned observations corresponding to the selected cluster. Adjusting the cluster start time removes from a subsequent analysis the positioned observations associated with one or more prior positions of the beacon.
    • 实施例分析人群来源的数据以识别移动或移动的信标。 基于与信标相关联的群集开始时间来过滤涉及特定信标的人群来源的数据。 聚类分析基于空间距离将经滤波的信标源数据分组为多个聚类。 与群集中的人群来源的数据相关联的时间戳进行比较,以选择一个集群。 与所选择的群集相关联的人群来源的数据用于确定移动的信标的位置信息。 基于与所选择的集群对应的定位观察相关联的最早时间戳来调整信标的集群开始时间。 调整群集开始时间从随后的分析中移除与信标的一个或多个先前位置相关联的定位观察。
    • 7. 发明申请
    • INFERRING BEACON POSITIONS BASED ON SPATIAL RELATIONSHIPS
    • 基于空间关系的传播信标位置
    • US20110205125A1
    • 2011-08-25
    • US12711889
    • 2010-02-24
    • Jyh-Han LinJohn Charles KrummArjun Sundararajan
    • Jyh-Han LinJohn Charles KrummArjun Sundararajan
    • G01S5/02
    • G01S5/0236G01S5/0036
    • Estimating positions of beacons based on spatial relationships among neighboring beacons. Beacon reference data defining positions of beacons is stored from beacon fingerprints observed by devices (e.g., enabled with global positioning system receivers). For a received beacon fingerprint having at least one beacon for which the beacon reference data is missing (e.g., from a device without a GPS receiver), beacons in the received beacon fingerprint for which beacon reference data is available are identified. Based on these identified beacons, the missing beacon reference data is calculated. In some embodiments, a set of spatially diverse beacons is selected from the identified beacons prior to calculating the beacon reference data.
    • 根据相邻信标之间的空间关系估计信标的位置。 信标参考数据定义信标的位置从设备观测到的信标指纹(例如,使用全球定位系统接收机启用)存储。 对于具有信标参考数据丢失的至少一个信标(例如,来自没有GPS接收机的设备)的接收信标指纹,识别信标参考数据可用的接收信标指纹中的信标。 基于这些标识的信标,计算丢失的信标参考数据。 在一些实施例中,在计算信标参考数据之前,从所标识的信标中选择一组空间多样的信标。