会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Discretized physics-based models and simulations of subterranean regions, and methods for creating and using the same
    • 基于离散物理的模型和地下区域的模拟,以及创建和使用它们的方法
    • US09085957B2
    • 2015-07-21
    • US13388843
    • 2010-08-10
    • Jon M. WallaceHao HuangJing Wan
    • Jon M. WallaceHao HuangJing Wan
    • G06G7/48E21B49/00E21B43/00G01V99/00
    • E21B49/00E21B43/00G01V99/00
    • Methods for creating and using discretized physics-based models of subsurface regions, which may contain a hydrocarbon reservoir or other subsurface feature(s). The methods may include selecting a pre-solved model, applying a mesh to the pre-solved model, defining the shape of the subsurface region to be modeled, and transforming the pre-solved model, to which the mesh has been applied, to the shape of the subsurface region. In some methods, the pre-solved model is an idealized model. In some methods, the mesh is applied to a solution of potential field lines associated with the pre-solved model, and in some methods, the solution of potential field lines is a composite solution of a plurality of solutions of potential field lines. In some methods, one or more supershapes are used to define the shape of the subsurface region. In some methods, a hyperelastic strain deformation calculation is utilized for the transforming.
    • 用于创建和使用可能包含烃储层或其他地下特征的地下区域的基于离散物理的模型的方法。 所述方法可以包括选择预先解决的模型,将网格应用于预先确定的模型,定义待建模的地下区域的形状,以及将已应用网格的预先解决的模型转换为 地下区域的形状。 在一些方法中,预先解决的模型是一个理想化的模型。 在一些方法中,将网格应用于与预定模型相关联的潜在场线的解,并且在一些方法中,势场线的解是多个势场解的解的复合解。 在一些方法中,使用一个或多个超级形状来限定地下区域的形状。 在一些方法中,使用超弹性应变变形计算进行变换。
    • 4. 发明申请
    • Discretized Physics-Based Models and Simulations of Subterranean Regions, and Methods For Creating and Using the Same
    • 基于离散物理的模型和地下区域的模拟,以及创建和使用它们的方法
    • US20130073272A1
    • 2013-03-21
    • US13388843
    • 2010-08-10
    • Jon M. WallaceHao HuangJing Wan
    • Jon M. WallaceHao HuangJing Wan
    • G06G7/48
    • E21B49/00E21B43/00G01V99/00
    • Methods for creating and using discretized physics-based models of subsurface regions, which may contain a hydrocarbon reservoir or other subsurface feature(s). The methods may include selecting a pre-solved model, applying a mesh to the pre-solved model, defining the shape of the subsurface region to be modeled, and transforming the pre-solved model, to which the mesh has been applied, to the shape of the subsurface region. In some methods, the pre-solved model is an idealized model. In some methods, the mesh is applied to a solution of potential field lines associated with the pre-solved model, and in some methods, the solution of potential field lines is a composite solution of a plurality of solutions of potential field lines. In some methods, one or more supershapes are used to define the shape of the subsurface region. In some methods, a hyperelastic strain deformation calculation is utilized for the transforming.
    • 用于创建和使用可能包含烃储层或其他地下特征的地下区域的基于离散物理的模型的方法。 所述方法可以包括选择预先解决的模型,将网格应用于预先确定的模型,定义待建模的地下区域的形状,以及将已应用网格的预先解决的模型转换为 地下区域的形状。 在一些方法中,预先解决的模型是一个理想化的模型。 在一些方法中,将网格应用于与预定模型相关联的潜在场线的解,并且在一些方法中,势场线的解是多个势场解的解的复合解。 在一些方法中,使用一个或多个超级形状来限定地下区域的形状。 在一些方法中,使用超弹性应变变形计算进行变换。
    • 5. 发明申请
    • Method For Predicting Well Reliability By Computer Simulation
    • 通过计算机模拟预测井可靠性的方法
    • US20100204972A1
    • 2010-08-12
    • US12602622
    • 2008-06-13
    • Sheng-Yuan HsuKevin H. SearlesJon M. Wallace
    • Sheng-Yuan HsuKevin H. SearlesJon M. Wallace
    • G06G7/48
    • E21B49/006G01V11/00G01V99/005G01V2210/6248G01V2210/663
    • Methods of predicting earth stresses in response to pore pressure changes in a hydrocarbon-bearing reservoir within a geomechanical system, include establishing physical boundaries for the geomechanical system and acquiring reservoir characteristics. Geomechanical simulations simulate the effects of changes in reservoir characteristics on stress in rock formations within the physical boundaries to determine the rock formation strength at selected nodes in the reservoir. The strength of the rock formations at the nodes is represented by an effective strain (εeff), which includes a compaction strain (εc) and out-of-plane shear strains (γ1-3, Y2-3) at a nodal point. The methods further include determining an effective strain criteria (εeffcr) from a history of well failures in the physical boundaries. The effective strain (εeffcr) at a selected nodal point is compared with the effective strain criteria (εeffcr) to determine if the effective strain (εeff) exceeds the effective strain criteria (εeffcr).
    • 在地质力学系统中预测地球应力响应孔隙压力变化的方法包括建立地质力学系统的物理边界并获取储层特征。 地质力学模拟模拟储层特征变化对物理边界内岩层应力的影响,以确定储层选定节点的岩层强度。 在节点处的岩层的强度由有效应变(&egr. eff)表示,其包括压实应变(&egr; c)和面外剪切应变(γ1-3,Y2-3) 节点 这些方法还包括从物理边界的井故障历史中确定有效应变标准(&egr。effcr)。 将有效应变(&egr。effcr)与有效应变标准(&egr。effcr)进行比较,以确定有效应变(&egr。eff)是否超过有效应变标准(&egr。effcr)。
    • 9. 发明授权
    • Method for predicting well reliability by computer simulation
    • 通过计算机模拟预测井可靠性的方法
    • US08265915B2
    • 2012-09-11
    • US12602622
    • 2008-06-13
    • Sheng-Yuan HsuKevin H. SearlesJon M. Wallace
    • Sheng-Yuan HsuKevin H. SearlesJon M. Wallace
    • G06F17/50
    • E21B49/006G01V11/00G01V99/005G01V2210/6248G01V2210/663
    • Methods of predicting earth stresses in response to pore pressure changes in a hydrocarbon-bearing reservoir within a geomechanical system, include establishing physical boundaries for the geomechanical system and acquiring reservoir characteristics. Geomechanical simulations simulate the effects of changes in reservoir characteristics on stress in rock formations within the physical boundaries to determine the rock formation strength at selected nodes in the reservoir. The strength of the rock formations at the nodes is represented by an effective strain (εeff), which includes a compaction strain (εc) and out-of-plane shear strains (Υ1-3, Y2-3) at a nodal point. The methods further include determining an effective strain criteria (εeffcr) from a history of well failures in the physical boundaries. The effective strain (εeffcr) at a selected nodal point is compared with the effective strain criteria (εeffcr) to determine if the effective strain (εeff) exceeds the effective strain criteria (εeffcr).
    • 在地质力学系统中预测地球应力响应孔隙压力变化的方法包括建立地质力学系统的物理边界并获取储层特征。 地质力学模拟模拟储层特征变化对物理边界内岩层应力的影响,以确定储层选定节点的岩层强度。 在节点处的岩层的强度由有效应变(&egr。eff)表示,其包括压实应变(&egr; c)和平面外剪切应变(&Ugr; 1-3,Y2-3) 在一个节点。 这些方法还包括从物理边界的井故障历史中确定有效应变标准(&egr。effcr)。 将有效应变(&egr。effcr)与有效应变标准(&egr。effcr)进行比较,以确定有效应变(&egr。eff)是否超过有效应变标准(&egr。effcr)。