会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Robust activation method for negative electron affinity photocathodes
    • 负电子亲和光阴极的稳健活化方法
    • US20090322222A1
    • 2009-12-31
    • US12321805
    • 2009-01-26
    • Gregory A. MulhollanJohn C. Bierman
    • Gregory A. MulhollanJohn C. Bierman
    • H01J40/06
    • H01J40/06
    • A method by which photocathodes (201), single crystal, amorphous, or otherwise ordered, can be surface modified to a robust state of lowered and in best cases negative, electron affinity has been discovered. Conventional methods employ the use of Cs (203) and an oxidizing agent (207), typically carried by diatomic oxygen or by more complex molecules, for example nitrogen trifluoride, to achieve a lowered electron affinity (404). In the improved activation method, a second alkali, other than Cs (205), is introduced onto the surface during the activation process, either by co-deposition, yo-yo, or sporadic or intermittent application. Best effect for GaAs photocathodes has been found through the use of Li (402) as the second alkali, though nearly the same effect can be found by employing Na (406). Suitable photocathodes are those which are grown, cut from boules, implanted, rolled, deposited or otherwise fabricated in a fashion and shape desired for test or manufacture independently supported or atop a support structure or within a framework or otherwise affixed or suspended in the place and position required for use.
    • 已经发现了通过其可以将光电阴极(201),单晶,无定形或其它有序的光电阴极(201)表面修饰为稳定的降低的状态并且在最佳情况下为负的电子亲和力的方法。 常规方法使用通常由双原子氧或更复杂分子例如三氟化氮承载的Cs(203)和氧化剂(207),以实现降低的电子亲和力(404)。 在改进的活化方法中,通过共沉积,溜溜球或零星或间歇施用,在激活过程中将不同于Cs(205)的第二碱引入表面。 通过使用Li(402)作为第二碱,已经发现GaAs光电阴极的最佳效果,尽管使用Na(406)可以发现几乎相同的效果。 合适的光电阴极是那些从支架上切下来的植入,滚压,沉积或以其他方式制成的形状,以及独立支撑的测试或制造所需的形状,或在支撑结构的顶部或框架内,或以其他方式固定或悬挂在该地方, 需要使用的位置。
    • 2. 发明授权
    • Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas
    • 暴露于氧化气体后使负电子亲和光电阴极复活的方法
    • US08298029B2
    • 2012-10-30
    • US12931839
    • 2011-02-11
    • Gregory A. MulhollanJohn C. Bierman
    • Gregory A. MulhollanJohn C. Bierman
    • H01J9/50
    • H01J9/505Y02W30/828
    • A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.
    • 已经发现了一种可以使暴露于氧化气体后的负电子亲和光电阴极(201),单晶,无定形或其它有序的方法恢复其量子产率的方法。 常规的回收方法采用铯作为阳性作用剂(104)。 在改进的恢复方法中,将足够能量以产生二次电子云(207)的电子束(205)施加到需要回收的光电阴极上。 通过负电子亲和表面(203)的高二次电子产率的能量束产生足够数量的低能电子,其作用于降低产量的表面,以消除吸收的氧化原子的影响,从而恢复量子产率 达到预衰减值。
    • 3. 发明申请
    • Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas
    • 暴露于氧化气体后使负电子亲和光电阴极复活的方法
    • US20110201244A1
    • 2011-08-18
    • US12931839
    • 2011-02-11
    • Gregory A. MulhollanJohn C. Bierman
    • Gregory A. MulhollanJohn C. Bierman
    • H01J9/50
    • H01J9/505Y02W30/828
    • A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.
    • 已经发现了一种可以使暴露于氧化气体后的负电子亲和光电阴极(201),单晶,无定形或其它有序的方法恢复其量子产率的方法。 常规的回收方法采用铯作为阳性作用剂(104)。 在改进的恢复方法中,将足够能量以产生二次电子云(207)的电子束(205)施加到需要回收的光电阴极上。 通过负电子亲和表面(203)的高二次电子产率的能量束产生足够数量的低能电子,其作用于降低产量的表面,以消除吸收的氧化原子的影响,从而恢复量子产率 达到预衰减值。
    • 4. 发明申请
    • Method for employing titania nanotube sensors as vacuum gauges
    • 采用二氧化钛纳米管传感器作为真空计的方法
    • US20120255364A1
    • 2012-10-11
    • US13506280
    • 2012-04-09
    • Gregory A. MulhollanJohn C. BiermanRobert E. Kirby
    • Gregory A. MulhollanJohn C. BiermanRobert E. Kirby
    • G01L21/12
    • G01L21/12
    • A method by which titania, or other composition, nanotube arrays, grown anodically or otherwise, can be made to meter vacuum pressure through hydrogen absorption has been discovered. The nanotube array (203) is fixed onto a demountable or permanently affixed flange, through which electrical current can be passed. By metering the current (205) for an allowable range of bias voltages (207), a resistance value (302) can be obtained. This resistance is related to the hydrogen pressure (202) through cross-calibration at the overlap with conventional gauges. Conventional gauges require free electrons for ionization of gas molecules, directly contributing to the pressure in the vacuum volume. The present invention avoids that complication by relying on the absorption of hydrogen. The method associated with this embodiment includes the mounting, bias, current measurement, restoration and boosting techniques all compatible with the operation of a vacuum vessel at very high, ultra-high and extreme-high vacuum levels.
    • 已经发现了通过其可以通过氢吸收来制备二氧化钛或其他组成的阳极或其他成分的纳米管阵列以计量真空压力的方法。 纳米管阵列(203)固定在可拆卸或永久固定的凸缘上,电流可通过该法兰通过。 通过对电流(205)计量允许的偏置电压范围(207),可以获得电阻值(302)。 该阻力通过与常规量规重叠的交叉校准与氢气压力(202)有关。 传统的测量仪要求自由电子用于电离气体分子,直接有助于真空体积的压力。 本发明通过依赖于氢的吸收来避免并发症。 与该实施例相关的方法包括安装,偏置,电流测量,恢复和升压技术,它们都与真空容器在非常高,超高和极高真空水平下的操作兼容。
    • 6. 发明授权
    • Robust activation method for negative electron affinity photocathodes
    • 负电子亲和光阴极的稳健活化方法
    • US08017176B2
    • 2011-09-13
    • US12321805
    • 2009-01-26
    • Gregory A. MulhollanJohn C. Bierman
    • Gregory A. MulhollanJohn C. Bierman
    • B05D5/12H01J9/12H01L21/00H01L29/06H01L29/12
    • H01J40/06
    • A method by which photocathodes(201), single crystal, amorphous, or otherwise ordered, can be surface modified to a robust state of lowered and in best cases negative, electron affinity has been discovered. Conventional methods employ the use of Cs(203) and an oxidizing agent(207), typically carried by diatomic oxygen or by more complex molecules, for example nitrogen trifluoride, to achieve a lowered electron affinity(404). In the improved activation method, a second alkali, other than Cs(205), is introduced onto the surface during the activation process, either by co-deposition, yo-yo, or sporadic or intermittent application. Best effect for GaAs photocathodes has been found through the use of Li(402) as the second alkali, though nearly the same effect can be found by employing Na(406). Suitable photocathodes are those which are grown, cut from boules, implanted, rolled, deposited or otherwise fabricated in a fashion and shape desired for test or manufacture independently supported or atop a support structure or within a framework or otherwise affixed or suspended in the place and position required for use.
    • 已经发现了通过其可以将光电阴极(201),单晶,无定形或其它有序的光电阴极(201)表面修饰为稳定的降低的状态并且在最佳情况下为负的电子亲和力的方法。 常规方法使用通常由双原子氧或更复杂分子例如三氟化氮承载的Cs(203)和氧化剂(207),以实现降低的电子亲和力(404)。 在改进的活化方法中,通过共沉积,溜溜球或零星或间歇应用,在活化过程中将不同于Cs(205)的第二碱引入表面。 通过使用Li(402)作为第二碱,已经发现GaAs光电阴极的最佳效果,尽管使用Na(406)可以发现几乎相同的效果。 合适的光电阴极是那些从支架上切下来的植入,滚压,沉积或以其他方式制成的形状,以及独立支撑的测试或制造所需的形状,或在支撑结构的顶部或框架内,或以其他方式固定或悬挂在该地方, 需要使用的位置。