会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Optimizing Drilling Mud Shearing
    • US20200215504A1
    • 2020-07-09
    • US16825303
    • 2020-03-20
    • Highland Fluid Technology, Inc.
    • Kevin W. SMITH
    • B01F11/02B01F7/00B01F15/00B01F3/12G01N11/00E21B41/00E21B21/08E21B21/06B01F15/06B01F5/10
    • Viscosity and other properties are determined at desired temperatures in drilling mud and other fluids by using a versatile cavitation device which, operating in the cavitation mode, mixes and heats the fluid to a specified temperature, and, operating in the shear mode, acts as a spindle for application of Couette principles to determine viscosity as a function of shear stress and shear rate. The invention obviates the practice of adjusting rheology of a drilling fluid by passing it through the drill bit. Drilling fluid may be managed by a “straight-through” method to the well, or by placing the cavitation device in a loop which isolates an aliquot of known volume and circulating the fluid through the loop including the cavitation device. A controller may be programmed to manage the viscosity and other properties at various temperatures by controlling the power input and angular rotation of the “spindle” (which has cavities on its cylindrical surface), and feeding viscosity-adjusting agents and other additives to the fluid. Data may be collected from the loop and used in the “straight-through” mode until it is determined that conditions require a new set of data, or the loop may be used continuously. The system may be used with a supplemental viscometer, density meter, and other instruments.
    • 9. 发明申请
    • Hydrating and Dissolving Polymers
    • US20190031793A1
    • 2019-01-31
    • US16118659
    • 2018-08-31
    • Highland Fluid Technology, Ltd.
    • Kevin W. Smith
    • C08F8/12C08F20/56C08L99/00B01F5/12B01F7/26
    • Polyacrylamides, guar gum (sometimes “guar”), xanthan gum, carboxymethylcellulose, hydroxyethylcellulose, and other water-soluble polymers are dissolved and hydrated in aqueous solutions, including especially recycled drilling, fracturing, and other oilfield fluids having significant salt contents, by passing the water-soluble polymer together with the aqueous medium to a cavitation device including an integrated disc pump. The integration of a disc pump with the cavitation device reduces the risk of gumming by applying a negative pressure at the feed point. The ability to use water-soluble polymers with the salty recycled oilfield fluids has significant environmental benefits, namely (1) fresh water is not needed, (2) disposal of the environmentally undesirable returned fluids is not needed, (3) difficultly degradable synthetic polymers may not be needed, and, in particular, (4) the enhanced ability to use guar, which, being a natural product, is biodegradable, is environmentally favored. Although the invention is most beneficial for use with salt or brackish water, its high efficiency points to beneficial use where fresh water is the only available choice for the aqueous medium. Where dry polymer is used, the invention's benefits are especially realized in terms of logistics and handling, since viscous and bulky solutions need not be prepared and stored in advance, thus also minimizing health, safety and environmental risks