会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • System and method for generating an occupancy model
    • 用于生成占用模型的系统和方法
    • US09070093B2
    • 2015-06-30
    • US13438313
    • 2012-04-03
    • Mihajlo GrbovicOnno R. ZoeterChristopher R. DanceGuillaume BouchardShengbo Guo
    • Mihajlo GrbovicOnno R. ZoeterChristopher R. DanceGuillaume BouchardShengbo Guo
    • G06G7/48G06Q10/04G08G1/14
    • G06Q10/04G08G1/14
    • A system and method for generating an occupancy model are disclosed. The model is learned using occupancy data for zones, each zone including cells, which are occupied or not at a given time, each with a sensor, which may be reporting or not. The data provides an observed occupancy corresponding to a number of cells in the respective zone which have reporting sensors, and the number of those sensors which are reporting that the respective cell is occupied. The occupancy model is based on a demand model and a sensor noise model which accounts for behavior of the non-reporting sensors. The noise model assumes that the probability of a sensor being in the reporting state is dependent on whether the respective cell is occupied or not. The model can fit the occupancy data better than one which assumes that non-reporting cells are occupied with the same frequency as reporting ones.
    • 公开了一种用于产生占用模型的系统和方法。 使用区域的占用数据学习模型,每个区域包括在给定时间被占用或不占用的单元,每个区域都有一个可能是报告的传感器。 数据提供对应于具有报告传感器的相应区域中的多个单元的观察到的占用,以及报告相应单元被占用的那些传感器的数量。 占用模型基于需求模型和传感器噪声模型,其考虑了非报告传感器的行为。 噪声模型假设传感器处于报告状态的概率取决于相应的单元是否被占用。 该模型可以适应占用数据,而不是假设非报告单元以与报告单元频率相同的频率占用。
    • 2. 发明授权
    • Temporal events analysis employing tree induction
    • 使用树诱导的时间事件分析
    • US08204843B2
    • 2012-06-19
    • US12330639
    • 2008-12-09
    • Guillaume BouchardJean-Marc Andreoli
    • Guillaume BouchardJean-Marc Andreoli
    • G06F17/00G06N5/02
    • G06N99/005
    • An events analysis method comprises: optimizing respective to a set of training data a set of branching transition likelihood parameters associating parent events of type k with child events of type k′ in branching processes; inferring a most probable branching process for a set of input data comprising events based on the optimized set of branching transition likelihood parameters; and identifying rare or unusual events of the set of input data based on the inferred most probable branching process. An events analysis apparatus includes a probabilistic branching process learning engine configured to optimize the set of branching transition likelihood parameters, and a probabilistic branching process inference engine configured to infer the most probable branching process.
    • 事件分析方法包括:针对一组训练数据优化一组分支转移似然参数,所述分支转移似然参数将k类的父事件与分支过程中的类型k'的子事件相关联; 推导出一组基于优化的分支转移似然参数集合的事件的输入数据的最可能的分支过程; 并且基于推断的最可能的分支过程来识别该组输入数据中的罕见或不寻常的事件。 事件分析装置包括被配置为优化所述分支转移似然参数集合的概率分支过程学习引擎,以及被配置为推断最可能的分支过程的概率分支过程推理引擎。
    • 4. 发明申请
    • OPTIMAL MAPPING OF A SPATIAL PRINT INFRASTRUCTURE
    • 空间打印基础设施的最佳映射
    • US20100324950A1
    • 2010-12-23
    • US12488900
    • 2009-06-22
    • Ray U. MerriamKirk PothosGuillaume Bouchard
    • Ray U. MerriamKirk PothosGuillaume Bouchard
    • G06Q10/00
    • G06Q10/043G06Q10/063G06Q50/16
    • Disclose are embodiments for selecting an advantageous, feasible and suitable location for placing a selected printing device within a space. A mathematical formula identifies a most advantageous location for placing the selected printing device. Next, successive contour regions surrounding this most advantageous location are defined such that any inner contour region is considered more advantageous than any outer contour region. A mark representing the most advantageous location and contour lines indicating the successive contour regions are plotted onto a floor plan of the space. The edited floor plan is then evaluated (e.g., either visually by a user or automatically) to determine whether the mark overlaps any fixed shapes and/or restricted-use areas. If the mark overlaps a fixed shape or restricted-use area, a different location can be selected that is within a closest possible contour region without overlapping any other fixed shapes or restricted-use areas.
    • 披露是用于选择用于将所选择的打印装置放置在空间内的有利的,可行的和合适的位置的实施例。 数学公式识别用于放置所选择的打印装置的最有利位置。 接下来,围绕该最有利位置的连续轮廓区域被定义为使得任何内部轮廓区域被认为比任何外部轮廓区域更有利。 将表示连续轮廓区域的最有利的位置和轮廓线的标记绘制在该空间的平面图上。 然后对编辑的平面图进行评估(例如,由用户视觉上或自动地),以确定标记是否与任何固定形状和/或受限制的使用区域重叠。 如果标记与固定形状或受限使用区域重叠,则可以选择不在最接近的可能轮廓区域内的不同位置,而不会与任何其它固定形状或限制使用区域重叠。
    • 8. 发明授权
    • Robust Bayesian matrix factorization and recommender systems using same
    • 鲁棒的贝叶斯矩阵分解和推荐系统使用它
    • US08880439B2
    • 2014-11-04
    • US13405796
    • 2012-02-27
    • Cedric ArchambeauGuillaume BouchardBalaji Lakshminarayanan
    • Cedric ArchambeauGuillaume BouchardBalaji Lakshminarayanan
    • G06F15/18G06N99/00G06N3/08G06K9/62
    • G06N99/005G06K9/6256G06N3/08G06N7/005
    • In a recommender method, Bayesian Matrix Factorization (BMF) is performed on a matrix having user and item dimensions and matrix elements containing user ratings for items made by users in order to train a probabilistic collaborative filtering model. A recommendation is generated for a user using the probabilistic collaborative filtering model. The recommendation may comprise a predicted item rating, or an identification of one or more recommended items. The recommender method is suitably performed by an electronic data processing device. The BMF may employ non-Gaussian priors, such as Student-t priors. The BMF may additionally or alternatively employ a heteroscedastic noise model comprising priors that include (1) a row dependent variance component that depends upon the matrix row and (2) a column dependent variance component that depends upon the matrix column.
    • 在推荐方法中,对具有用户和项目维度的矩阵执行贝叶斯矩阵因子分解(BMF),并且对于由用户做出的项目包含用户评级的矩阵元素来执行,以便训练概率协同过滤模型。 使用概率协同过滤模型为用户生成一个建议。 该推荐可以包括预测项目评级,或者一个或多个推荐项目的标识。 推荐方法由电子数据处理装置适当地执行。 BMF可以使用非高斯先验,例如Student-t先验。 BMF可以附加地或替代地使用包含先验的异方差噪声模型,其包括(1)取决于矩阵行的行依赖方差分量,以及(2)依赖于矩阵列的列依赖方差分量。
    • 10. 发明授权
    • Fast algorithm for convex optimization with application to density estimation and clustering
    • 用于凸优化的快速算法,应用于密度估计和聚类
    • US08301579B2
    • 2012-10-30
    • US12245939
    • 2008-10-06
    • Florent PerronninGuillaume Bouchard
    • Florent PerronninGuillaume Bouchard
    • G06F17/00G06N7/00G06N7/08
    • G06F17/11G06K9/6222G06K9/6226
    • A method of maximizing a concave log-likelihood function comprises: selecting a pair of parameters from a plurality of adjustable parameters of a concave log-likelihood function; maximizing a value of the concave log-likelihood function respective to an adjustment value to generate an optimal adjustment value, wherein the value of one member of the selected pair of parameters is increased by the adjustment value and the value of the other member of the selected pair of parameters is decreased by the adjustment value; updating values of the plurality of adjustable parameters by increasing the value of the one member of the selected pair of parameters by the optimized adjustment value and decreasing the value of the other member of the selected pair of parameters by the optimized adjustment value; and repeating the selecting, maximizing, and updating for different pairs of parameters to identify optimized values of the plurality of adjustable parameters.
    • 最大化凹对数似然函数的方法包括:从凹对数似然函数的多个可调参数中选择一对参数; 最大化相应于调整值的凹对数似然函数的值以生成最佳调整值,其中所选择的一对参数中的一个成员的值被增加了所选择的另一成员的调整值和值 一对参数减少调整值; 通过优化的调整值增加所选择的一对参数中的一个成员的值并通过优化的调整值减小所选择的一对参数中的另一个成员的值来更新多个可调参数的值; 以及重复对不同参数对的选择,最大化和更新以识别所述多​​个可调参数的优化值。