会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • CREATING PACKET TRAFFIC CLUSTERING MODELS FOR PROFILING PACKET FLOWS
    • 创建分组流程的分组流量聚类模型
    • US20130148513A1
    • 2013-06-13
    • US13315037
    • 2011-12-08
    • Geza SZABOGergely PONGRÁCZZoltán TURÁNYI
    • Geza SZABOGergely PONGRÁCZZoltán TURÁNYI
    • H04L12/26
    • H04L41/142H04L41/16H04L43/028
    • Packet traffic profiling models are created based on packet headers of a packet flow at a first model aggregation level to obtain first flow information describing packet-oriented parameters of the flow. A machine learning algorithm (MLA) creates a first model based on the first information, determines if the first model achieves a first confidence level, and if not, defines multiple flow slices in the packet flow. Flow slices at a second higher model aggregation level are processed to obtain second flow information describing flow slice-oriented parameters of the packet flow, and an MLA creates a second model based on the second information to determine if the second model achieves a second confidence level. If so, the process completes; if not, further processing continues at a next level. One of the models is selected for profiling packet traffic flows.
    • 基于在第一模型聚合级别的分组流的分组报头创建分组业务分析模型,以获得描述该流的分组导向参数的第一流信息。 机器学习算法(MLA)基于第一信息创建第一模型,确定第一模型是否实现第一置信水平,如果不是,则定义分组流中的多个流片。 处理第二较高模型聚合级别的流片被处理以获得描述分组流的面向流片的参数的第二流信息,并且MLA基于第二信息创建第二模型以确定第二模型是否实现第二置信水平 。 如果是,则该过程完成; 如果没有,进一步的处理将继续下一个级别。 选择其中一个模型来分析数据包流量。
    • 5. 发明申请
    • A Method of and Network Server for Detecting Data Patterns in an Input Data Stream
    • 用于检测输入数据流中的数据模式的方法和网络服务器
    • US20150156102A1
    • 2015-06-04
    • US14411547
    • 2012-06-29
    • Geza SzaboWesley Davison Braga MeloGabor Sandor EnyediStenio FernandesGergely PongráczDjamel Sadok
    • Geza SzaboWesley Davison Braga MeloGabor Sandor EnyediStenio FernandesGergely PongráczDjamel Sadok
    • H04L12/26
    • H04L43/50H04L47/2483H04L63/1408
    • Computer controlled method, network server (42, 43, 44, 46, 48) and system (40) for detecting data patterns in a data stream (36) received by a computer (30). The data stream (36) comprising a plurality of data symbols. The computer (30) executes a finite automata (10) comprising a plurality of states (11, 12, 13, 14, 15) including a start state (11) and at least one accepting state (15). State transitions (16) are triggered by a data symbol (17a) according to a state transition register (17) and the method comprises the steps of determining (21), by the computer (30), from a data symbol register (18) whether a data symbol of the data stream (36) is comprised in a group of data symbols not resulting in an accepting state (15), and triggering (22), by the computer (30), a transition (16) to the start state (11) for data symbols comprised in the group and a transition (23) to a state (12, 13, 14, 15) according to the state transition register (17) for detecting the data pattern otherwise.
    • 计算机控制方法,用于检测由计算机(30)接收的数据流(36)中的数据模式的网络服务器(42,43,44,46,48)和系统(40)。 数据流(36)包括多个数据符号。 计算机(30)执行包括包括开始状态(11)和至少一个接受状态(15)的多个状态(11,12,13,14,15)的有限自动机(10)。 状态转换(16)根据状态转移寄存器(17)由数据符号(17a)触发,并且该方法包括以下步骤:由计算机(30)从数据符号寄存器(18)确定(21) 数据流(36)的数据符号是否包含在不导致接受状态(15)的数据符号组中,并且由计算机(30)触发(22)到开始的转换(16) 状态(11),根据用于检测数据模式的状态转移寄存器(17)的转换(23)到状态(12,13,14,15)。