会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • SCALABLE RANDOM NUMBER GENERATION
    • 可扩展随机数生成
    • US20120179735A1
    • 2012-07-12
    • US12986006
    • 2011-01-06
    • Niels T. FergusonDayi ZhouVijay G. Bharadwaj
    • Niels T. FergusonDayi ZhouVijay G. Bharadwaj
    • G06F7/58
    • G06F7/58
    • In embodiments of scalable random number generation, a system includes one or more entropy pools that combine entropy data, which is derived from entropy sources based on event data. A root pseudo-random number generator (PRNG) maintains a seeded entropy state that is reseeded by the entropy pools, and a seed version identifier updates to indicate a current seed version of the root PRNG. Processor PRNGs are instantiated one each per logical processor in a kernel of the system, where each processor PRNG maintains a PRNG entropy state that is reseeded from the root PRNG, and a processor PRNG generates a random number from a respective PRNG entropy state when invoked.
    • 在可扩展随机数生成的实施例中,系统包括一个或多个熵池,其组合基于事件数据从熵源导出的熵数据。 根伪随机数生成器(PRNG)保持由熵池重新获得的种子熵状态,并且种子版本标识符更新以指示根PRNG的当前种子版本。 处理器PRNG在系统的内核中每个逻辑处理器被实例化,其中每个处理器PRNG保持从根PRNG重新进入的PRNG熵状态,并且处理器PRNG在被调用时从相应的PRNG熵状态生成随机数。
    • 4. 发明授权
    • Scalable random number generation
    • 可扩展随机数生成
    • US08682948B2
    • 2014-03-25
    • US12986006
    • 2011-01-06
    • Niels T. FergusonDayi ZhouVijay G. Bharadwaj
    • Niels T. FergusonDayi ZhouVijay G. Bharadwaj
    • G06F7/58
    • G06F7/58
    • In embodiments of scalable random number generation, a system includes one or more entropy pools that combine entropy data, which is derived from entropy sources based on event data. A root pseudo-random number generator (PRNG) maintains a seeded entropy state that is reseeded by the entropy pools, and a seed version identifier updates to indicate a current seed version of the root PRNG. Processor PRNGs are instantiated one each per logical processor in a kernel of the system, where each processor PRNG maintains a PRNG entropy state that is reseeded from the root PRNG, and a processor PRNG generates a random number from a respective PRNG entropy state when invoked.
    • 在可扩展随机数生成的实施例中,系统包括一个或多个熵池,其组合基于事件数据从熵源导出的熵数据。 根伪随机数生成器(PRNG)保持由熵池重新获得的种子熵状态,并且种子版本标识符更新以指示根PRNG的当前种子版本。 处理器PRNG在系统的内核中每个逻辑处理器被实例化,其中每个处理器PRNG保持从根PRNG重新进入的PRNG熵状态,并且处理器PRNG在被调用时从相应的PRNG熵状态生成随机数。