会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 再颁专利
    • Ultra-fast multi-section MRI using gradient and spin echo (GRASE) imaging
    • 超快速多段MRI使用梯度和自旋回波(GRASE)成像
    • USRE35656E
    • 1997-11-11
    • US515177
    • 1995-08-15
    • David A. FeinbergKoichi Oshio
    • David A. FeinbergKoichi Oshio
    • G01R33/48A61B5/055G01R33/561G01V3/00
    • G01R33/5615G01R33/5618G01R33/56554
    • Fast magnetic resonance imaging uses combined gradient echoes and spin echoes. In each of one or more TR intervals, after an initial NMR RF nutation pulse, a sequence of 180.degree. RF nutation pulses is used to refocus the RF response into corresponding string of spin echoes. However, in addition, during the time that such spin echo would normally occur after each such 180.degree. RF nutation pulse, a plurality of alternating polarity read-out magnetic gradient pulses is utilized so as to very rapidly form a sub-sequence of gradient echoes. This fast multi-section MRI sequence utilizes the speed advantages of gradient refocusing while overcoming the image artifacts arising from static field homogeneity and chemical shift. Image contrast is still determined by the T2 contrast in Hahn spin echoes. A novel k-space trajectory temporally modulates signals and demodulates artifacts. The echo responses are selectively phase-encoded and time shifted in occurrence so as to smoothly distribute unwanted phase shift from field inhomogeneity and/or chemical phase shift effects over the entire phase encoded dimension in k-space. The technique can also be extended so as to provide T2-weighted multi-slab three-dimensional volume images.
    • 快速磁共振成像使用组合梯度回波和自旋回波。 在一个或多个TR间隔的每个中,在初始NMR RF章动脉冲之后,使用180°RF顺序脉冲序列将RF响应重新聚焦到相应的自旋回波串中。 然而,此外,在这样的自旋回波通常在每个这样的180°RF章动脉冲之后的时间内,利用多个交替极性读出磁梯度脉冲,以便非常迅速地形成梯度回波的子序列 。 该快速多部分MRI序列利用梯度重新聚焦的速度优势,同时克服由静态场均匀性和化学位移引起的图像伪影。 图像对比度仍然由Hahn自旋回波中的T2对比度决定。 新颖的k空间轨迹在时间上调制信号并解调伪像。 回波响应被选择性地进行相位编码并在发生时进行时移,以便在k空间中的整个相位编码维度上平滑地分布不均匀性和/或化学相移效应的不期望的相移。 该技术也可以扩展,以提供T2加权的多板三维体积图像。
    • 3. 发明授权
    • Grase-type MR pulse sequences
    • Grase型MR脉冲序列
    • US5680045A
    • 1997-10-21
    • US504298
    • 1995-07-20
    • David A. Feinberg
    • David A. Feinberg
    • G01R33/54A61B5/055G01R33/561G06T1/00G01V3/00
    • G01R33/5615G01R33/561G01R33/5618
    • A plurality of non-overlapping bands is established in k-space. Each band includes a set of lines to be read out between a maximum phase-encoding gradient and a minimum phase-encoding gradient. Similarly, an identical plurality of temporally sequential and non-overlapping subsequences of pulses are established in the MR pulse sequence. Each subsequence corresponds to one and only one of the bands and reads out lines of MR data at phase-encoding gradients that are between the maximum and minimum phase-encoding gradients for that corresponding one. Lines of MR data are read out using the MR pulse sequence and the k-space bands are filled with lines of MR data. Advantageously, the first subsequence is used to fill up the center band in k-space.
    • 在k空间中建立多个非重叠频带。 每个频带包括一组要在最大相位编码梯度和最小相位编码梯度之间读出的线。 类似地,在MR脉冲序列中建立相同的多个时间顺序和不重叠的脉冲子序列。 每个子序列对应于频带中的一个且仅一个,并且在对应的一个的相位编码梯度的最大和最小相位编码梯度之间读取MR数据的行。 使用MR脉冲序列读出MR数据的行,并且使用MR数据线填充k空间频带。 有利地,第一子序列用于填充k空间中的中心频带。
    • 4. 发明授权
    • Increased signal-to-noise ratio in magnetic resonance images using
synthesized conjugate symmetric data
    • 使用合成共轭对称数据增加磁共振图像中的信噪比
    • US4728893A
    • 1988-03-01
    • US70156
    • 1987-07-02
    • David A. Feinberg
    • David A. Feinberg
    • G01R33/56G01R33/561G01R33/20
    • G01R33/56G01R33/561G01R33/5608
    • A complete data set of complex-valued NMR signal responses (sufficient to determine an NMR image) is conventionally acquired. Thereafter, using such time domain signals and/or a one-dimensional Fourier transform of same, synthesized NMR signals are derived using assumed complex conjugate symmetry relationships between the desired NMR signal components. Such synthesized data is then averaged (e.g. with the actually acquired data) to result in averaged data having an improved signal-to-noise ratio (e.g. up to 100% improvement or more is theoretically possible). Such improvement is made possible because the noise signal components (unlike the desired signal components) do not actually exhibit complex conjugate symmetry. Accordingly, noise signals add incoherently while desired signals add coherently when the synthesized data is averaged. Once an averaged data set is thus derived having improved signal-to-noise ratio, it may be conventionally transformed to an NMR image (e.g. by two-dimensional Fourier transformation) so as to result in an NMR image having a similarly improved signal-to-noise ratio.
    • 常规地获得复值NMR信号响应的完整数据集(足以确定NMR图像)。 此后,使用这样的时域信号和/或其一维傅立叶变换,使用所需NMR信号分量之间的假定的复共轭对称关系导出合成的NMR信号。 然后对这样的合成数据进行平均(例如,与实际获取的数据),以产生具有改善的信噪比(例如,理论上可达100%的改进或更多)的平均数据。 这样的改进是可能的,因为噪声信号分量(不同于期望的信号分量)实际上不表现出复杂的共轭对称性。 因此,当合成数据被平均时,噪声信号不连续地添加,而期望的信号相干地相加。 一旦得到具有改善的信噪比的平均数据集,则可以将其通常转换为NMR图像(例如通过二维傅里叶变换),以便得到具有类似改善的信号与 - 比例。
    • 5. 发明授权
    • Rapid magnetic resonance imaging using multiple phase encoded spin
echoes in each of plural measurement cycles
    • 在多个测量周期中的每一个中使用多相编码的自旋回波的快速磁共振成像
    • US4684891A
    • 1987-08-04
    • US760832
    • 1985-07-31
    • David A. Feinberg
    • David A. Feinberg
    • G01R33/561G01R33/20
    • G01R33/561G01R33/5617
    • Slice selective 90.degree. and plural subsequent 180.degree. NMR RF pulses are utilized to elicit a train of NMR spin echoes from a given slice or "planar volume" of the object under test in each of plural measurement cycles. Spatial information is encoded within the spin echo by imposing a G.sub.x gradient during each spin echo readout. Phase encoding in a second G.sub.y dimension is achieved by using (1) a cycle-dependent .beta.G.sub.y gradient at least once during each NMR measurement cycle and (2) further .delta.G.sub.y magnetic gradient pulses in association with some or all of the individual spin echo responses within each measurement cycle. The two different types of G.sub.y gradient pulses are dimensioned and timed so as to result in the desired number of phase encoded spin echo signals which subsequently can be arranged in a linearly increasing progression of phase encoding so as to be usable in a two-dimensional Fourier transformation process to produce an NMR image. Because the spin echo data are taken at different times of echo occurrences within a given measurement cycle, T2 artifact may be present in such an image. However T2 correction may be provided by calculating T2 and scaling all of the time domain spin echo data to a single common equivalent time of echo occurrence before performing the final two-dimensional Fourier transformation process which results in a final T2-corrected NMR image.
    • 切片选择性90°和多个随后的180°NMR RF脉冲用于在多个测量周期中的每一个中从给定切片或被测物体的“平面体积”引出一系列NMR自旋回波。 在每个自旋回波读数期间,通过施加Gx梯度,在自旋回波内编码空间信息。 通过在每个NMR测量周期期间至少使用(1)循环依赖的βGy梯度至少一次来实现第二Gy维度中的相位编码,以及(2)与部分或全部个体自旋回波相关联的进一步的ΔGy磁梯度脉冲 每个测量周期内的响应。 两种不同类型的Gy梯度脉冲的尺寸和定时,以便产生期望数量的相位编码的自旋回波信号,其随后可以排列成线性增加的相位编码进程,以便可用于二维傅里叶 转化过程以产生NMR图像。 因为自旋回波数据是在给定测量周期内不同时间的回波发生时拍摄的,所以在此类图像中可能会出现T2伪影。 然而,可以通过计算T2并且将所有时域自旋回波数据缩放到回波发生的单个公共等效时间之前,可以提供T2校正,然后进行最后的二维傅里叶变换处理,这导致最终的T2校正的NMR图像。
    • 9. 发明授权
    • Method and product for improved images in magnetic resonance imaging
using multiple breatholding
    • 使用多次呼吸的磁共振成像改善图像的方法和产品
    • US5613492A
    • 1997-03-25
    • US414183
    • 1995-03-31
    • David A. Feinberg
    • David A. Feinberg
    • G01R33/567A61B5/055
    • G01R33/56509G01R33/5673
    • In MRI (Magnetic Resonance Imaging) the signal-to-noise images of a subject's body organs are improved by combining the signals from a number of position co-registered images or fractional data sets. The co-registration is obtained by reducing movement of the organ by the subject holding his breath. A computer cursor may be positioned at a selected point of the subject's organ displayed on the MRI monitor's screen to produce a fiducial marking on the MRI image or fractional data sets, which provides for accurate co-registration. Alternatively, a computer edge detection algorithm is used to determine the edge, and position, of the organ of interest and to produce radio frequency offsets for accurate co-registration of the subsequent images or fractional data sets. The fractional data sets, each having a fiducial marking, are combined to form a final MRI image.
    • 在MRI(磁共振成像)中,通过组合来自多个位置共同注册的图像或分数据集合的信号来改善受试者的身体器官的信噪比图像。 共同注册是通过减少被呼吸的受试者的器官的运动来获得的。 计算机光标可以定位在MRI监视器屏幕上显示的被摄体器官的选定点,以在MRI图像或分数据集上产生基准标记,从而提供准确的共同注册。 或者,使用计算机边缘检测算法来确定感兴趣的器官的边缘和位置,并且产生用于随后的图像或分数据集合的精确共同配准的射频偏移。 每个具有基准标记的分数据集合被组合以形成最终的MRI图像。
    • 10. 发明授权
    • Ultra-fast multi-section MRI using gradient and spin echo (grase) imaging
    • 超快速多段MRI使用梯度和自旋回波(grase)成像
    • US5270654A
    • 1993-12-14
    • US727229
    • 1991-07-05
    • David A. FeinbergKoichi Oshio
    • David A. FeinbergKoichi Oshio
    • G01R33/48A61B5/055G01R33/561G01V3/00
    • G01R33/5615G01R33/5618G01R33/56554
    • Fast magnetic resonance imaging uses combined gradient echoes and spin echoes. In each of one or more TR intervals, after an initial NMR RF nutation pulse, a sequence of 180.degree. RF nutation pulses is used to refocus the RF response into corresponding string of spin echoes. However, in addition, during the time that such spin echo would normally occur after each such 180.degree. RF nutation pulse, a plurality of alternating polarity read-out magnetic gradient pulses is utilized so as to very rapidly form .a sub-sequence of gradient echoes. This fast multi-section MRI sequence utilizes the speed advantages of gradient refocusing while overcoming the image artifacts arising from static field homogeneity and chemical shift. Image contrast is still determined by the T2 contrast in Hahn spin echoes. A novel k-space trajectory temporally modulates signals and demodulates artifacts. The echo responses are selectively phase-encoded and time shifted in occurrence so as to smoothly distribute unwanted phase shift from field inhomogeneity and/or chemical phase shift effects over the entire phase encoded dimension in k-space. The technique can also be extended so as to provide T2-weighted multi-slab three-dimensional volume images.
    • 快速磁共振成像使用组合梯度回波和自旋回波。 在一个或多个TR间隔的每个中,在初始NMR RF章动脉冲之后,使用180°RF顺序脉冲序列将RF响应重新聚焦到相应的自旋回波串中。 然而,此外,在每个这样的180°RF章动脉冲之后通常会发生这种自旋回波的时间期间,使用多个交替极性读出磁梯度脉冲,以便非常快速地形成梯度的子序列 回声。 该快速多部分MRI序列利用梯度重新聚焦的速度优势,同时克服由静态场均匀性和化学位移引起的图像伪影。 图像对比度仍然由Hahn自旋回波中的T2对比度决定。 新颖的k空间轨迹在时间上调制信号并解调伪像。 回波响应被选择性地进行相位编码并在发生时进行时移,以便在k空间中的整个相位编码维度上平滑地分布不均匀性和/或化学相移效应的不期望的相移。 该技术也可以扩展,以提供T2加权的多板三维体积图像。