会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method of analyzing oil and water fractions in a flow stream
    • 分析流量中的油和水分数的方法
    • US5331156A
    • 1994-07-19
    • US15708
    • 1993-02-09
    • Daniel R. HinesNoboru WadaStephen GaroffOliver C. MullinsPaul HammondJeffrey TarvinStephen P. CramerRalphe Wiggins
    • Daniel R. HinesNoboru WadaStephen GaroffOliver C. MullinsPaul HammondJeffrey TarvinStephen P. CramerRalphe Wiggins
    • G01N21/35G01N33/28G01F5/00G01F1/74
    • G01N21/359G01N21/3577G01N33/2823
    • Methods for quantifying the oil and water fractions of a fluid stream. A first method broadly includes making optical density (OD) measurements of the fluid stream by detecting photons of a first predetermined energy where the oil and water absorption characteristics are substantially identical (e.g., 1710 nm wavelength), and determining the oil and water fractions f.sub.o and f.sub.w according to OD.perspectiveto.f.sub.w .alpha..sub.w l+f.sub.o .alpha..sub.o l where .alpha..sub.w and .alpha..sub.o are related to the absorption coefficients of the oil and water at the predetermined energy, l is the path width of the fluid stream, and f.sub.w +f.sub.o =1. A second method which eliminates scattering effects utilizes the photons at the first predetermined energy and further utilizes photons of a second predetermined energy which is sufficiently close to the first predetermined energy such that the oil fraction is a linear function of the OD over the energy range. The oil and water fractions are then determined from the difference in optical density values (.DELTA.OD) according to .DELTA.OD=f.sub.o [(OD.sub.o,a -OD.sub.o,b)- (OD.sub.w,a -OD.sub.w,b)]+(OD.sub.w,a -OD.sub.w,b), where OD.sub.o,a, OD.sub.o,b, OD.sub.w,a, and OD.sub.w,b are the optical densities per unit length of pure oil (o) and pure water (w) at the first (a) and second (b) wavelengths.
    • 用于量化流体流的油和水分数的方法。 第一种方法广泛地包括通过检测第一预定能量的光子来测量流体流的光密度(OD),其中油和水吸收特性基本相同(例如,1710nm波长),并且确定油和水分数fo 和fw根据OD&persp&fw alpha wl + fo alpha ol,其中αw和αo与预定能量下的油和水的吸收系数相关,l是流体流的路径宽度,fw + fo = 1。 消除散射效应的第二种方法利用第一预定能量的光子,并进一步利用足够接近于第一预定能量的第二预定能量的光子,使得油分数在能量范围内是OD的线性函数。 然后根据DELTA OD = fo [(ODo,a-ODo,b) - (ODw,a-ODw,b)] +(ODw,a-ODw,b) - 的光密度值(DELTA OD) a-ODw,b),其中ODo,a,ODo,b,ODw,a和ODw,b是在第一(a)处纯油(o)和纯水(w)的每单位长度的光密度, 第二(b)波长。
    • 4. 发明授权
    • Extraordinary magnetoresistance at room temperature in inhomogeneous narrow-gap semiconductors
    • 在非均匀窄间隙半导体中室温下的非凡磁阻
    • US06707122B1
    • 2004-03-16
    • US09697661
    • 2000-10-26
    • Daniel R. HinesStuart A. SolinTineke ThioTao Zhou
    • Daniel R. HinesStuart A. SolinTineke ThioTao Zhou
    • H01L2714
    • G11C11/14G01R33/09G01R33/095G11B5/37G11B5/398G11B5/3993H01L43/08Y10T428/1143Y10T428/12576Y10T428/12937
    • A symmetric van der Pauw disk of homogeneous nonmagnetic semiconductor material, such as indium antimonide, with an embedded concentric conducting material inhomogeneity, such as gold, exhits room temperature geometric extraordinary magnetoresistance (EMR) as high as 100%, 9,100% and 750,000% at magnetic fields of 0.05, 0.25 and 4.0 Tesla, respectively. Moreover, for inhomogeneities of sufficiently large cross section relative to that of the surrounding semiconductor material, the resistance of the disk is field-independent up to an onset field above which the resistance increases rapidly. These results can be understood in terms of the field-dependent deflection of current around the inhomogeneity. The EMR exhibited by a composite van der Pauw sensor comprising a semiconductor having an embedded metallic inhomogeneity or internal shunt can be obtained from electrically equivalent externally shunted structures, such as rectangular plates including an external conductive shunt element which is simple to manufacture in the mesoscopic sizes required for important magnetic sensor applications. For example, a bilinear conformal mapping is used to transform a circular composite van der Pauw disk sensor having an embedded conducting inhomogeneity into a corresponding externally shunted rectangular plate structure. The result is an EMR sensor that can be realized in very simple structures which facilitate fabrication in mesoscopic dimensions important for many magnetic sensor applications.
    • 均匀非磁性半导体材料的对称van der Pauw磁盘,如锑化铟,具有不均匀性的嵌入式同心导电材料,如金,可以将室温几何异常磁阻(EMR)高达100%,9,100%和750,000% 磁场分别为0.05,0.25和4.0特斯拉。 此外,对于相对于周围半导体材料的横截面足够大的不均匀性,磁盘的电阻是磁场独立的,直到电阻快速增加的起始场。 这些结果可以根据不均匀性周围的电流的场相关偏转来理解。 包括具有嵌入的金属不均匀性或内部分流的半导体的复合范德波湿传感器所展示的EMR可以从电等效的外部分流结构获得,例如包括外部导电分流元件的矩形板,该外部导电分流元件以介观尺寸制造简单 需要重要的磁传感器应用。 例如,双线性共形映射用于将具有嵌入的导电不均匀性的圆形复合材料van der Pauw盘传感器转换成相应的外部分流的矩形板结构。 结果是可以以非常简单的结构实现的EMR传感器,这有助于在许多磁传感器应用中重要的介观尺寸中的制造。