会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and apparatus for controlling a continuously variable transmission
    • 用于控制无级变速器的方法和装置
    • US07479090B2
    • 2009-01-20
    • US11481478
    • 2006-07-06
    • Craig S. Jacobs
    • Craig S. Jacobs
    • F16H61/662G06F19/00
    • F16H61/66259F16H61/66254Y10T477/619Y10T477/623
    • A method of controlling the ratio of a continuously variable transmission (CVT) that is controlled by a CVT controller is provided. The method includes determining the torque produced by an engine, calculating an acceleration limit value based upon the torque value and the engine inertia value and a calibrated acceleration limiting ratio. The acceleration limit value is compared to the desired engine speed value to determine a command engine speed value. The CVT ratio is then calculated by dividing the command engine speed value by a measured vehicle speed value. The calculated CVT ratio is compared to a measured CVT ratio and a control signal is sent to an actuator of a CVT. Torque provided to the engine to overcome the engine inertia is limited by the method so that the step change in torque provided to the vehicle wheels, as the engine approaches the command engine speed value, is reduced.
    • 提供一种控制由CVT控制器控制的无级变速器(CVT)的比率的方法。 该方法包括确定由发动机产生的转矩,基于转矩值和发动机惯量值以及校准加速度限制比来计算加速度极限值。 将加速度极限值与期望的发动机转速值进行比较,以确定指令发动机转速值。 然后通过将指令发动机速度值除以测量的车辆速度值来计算CVT比。 将计算的CVT比与测量的CVT比进行比较,并将控制信号发送到CVT的执行器。 提供给发动机以克服发动机惯量的扭矩受到该方法的限制,使得当发动机接近指令发动机转速值时,提供给车轮的扭矩的阶梯变化减小。
    • 3. 发明申请
    • Method and apparatus for controlling a contiuously variable transmission
    • 用于控制不可变传动装置的方法和装置
    • US20080009389A1
    • 2008-01-10
    • US11481478
    • 2006-07-06
    • Craig S. Jacobs
    • Craig S. Jacobs
    • B60W10/04
    • F16H61/66259F16H61/66254Y10T477/619Y10T477/623
    • A method of controlling the ratio of a continuously variable transmission (CVT) that is controlled by a CVT controller is provided. The method includes determining the torque produced by an engine, calculating an acceleration limit value based upon the torque value and the engine inertia value and a calibrated acceleration limiting ratio. The acceleration limit value is compared to the desired engine speed value to determine a command engine speed value. The CVT ratio is then calculated by dividing the command engine speed value by a measured vehicle speed value. The calculated CVT ratio is compared to a measured CVT ratio and a control signal is sent to an actuator of a CVT. Torque provided to the engine to overcome the engine inertia is limited by the method so that the step change in torque provided to the vehicle wheels, as the engine approaches the command engine speed value, is reduced.
    • 提供一种控制由CVT控制器控制的无级变速器(CVT)的比率的方法。 该方法包括确定由发动机产生的转矩,基于转矩值和发动机惯量值以及校准加速度限制比来计算加速度极限值。 将加速度极限值与期望的发动机转速值进行比较,以确定指令发动机转速值。 然后通过将指令发动机速度值除以测量的车辆速度值来计算CVT比。 将计算的CVT比与测量的CVT比进行比较,并将控制信号发送到CVT的执行器。 提供给发动机以克服发动机惯量的扭矩受到该方法的限制,使得当发动机接近指令发动机转速值时,提供给车轮的扭矩的阶梯变化减小。
    • 5. 发明授权
    • Radar system
    • 雷达系统
    • US5969667A
    • 1999-10-19
    • US173322
    • 1998-10-15
    • Michael E. FarmerCraig S. Jacobs
    • Michael E. FarmerCraig S. Jacobs
    • G01S7/03G01S7/40G01S13/34G01S13/93G06K9/32G01S13/00
    • G06K9/3241G01S7/038G01S7/4056G01S13/34G01S13/931G01S7/4021
    • A leakage calibration and removal system and method estimates the complex in-phase and quadrature phase (I/Q) components of a leakage signal for each beam location in the sampled down-converted radar signal in a radar system (10). In a digital embodiment, the stored leakage calibration signal (264) is subtracted (206) from the sampled radar signal, and the resultant signal is processed (208, 210, 212) to detect targets. A leakage calibration process (250) is activated if a leakage signal test (214) indicates a problem for a sufficient number of consecutive scans (216), wherein for each beam location, M consecutive I/Q waveforms are averaged (252), known targets are removed (254, 256, 258), and the resulting signal is scaled (262) and stored (264) as a new leakage calibration signal if the variance is within acceptable limits (262). In a hybrid embodiment, the stored leakage signal (364) is converted to analog form (366), subtracted (301) from the analog down-converted radar signal (300), and scaled by a variable gain (303) before the complex I/Q components are sampled therefrom (302, 304). A leakage calibration process (350) is activated every Nth scan (316), wherein for each beam location, M chirp waveforms are averaged (352) and checked for variance (354). If the variance is within acceptable limits, the leakage signal is updated by a Kalman Filter (356), stored as the new leakage calibration signal (364), and the Kalman gain matrices are updated (358).
    • 泄漏校准和去除系统和方法估计雷达系统(10)中采样的下变频雷达信号中每个波束位置的泄漏信号的复数同相和正交相位(I / Q)分量。 在数字实施例中,从采样的雷达信号中减去(206)所存储的泄漏校准信号(264),并且对所得到的信号进行处理(208,210,212)以检测目标。 如果泄漏信号测试(214)指示足够数量的连续扫描(216)的问题,则激活泄漏校准过程(250),其中对于每个波束位置,M个连续I / Q波形被平均化(252),已知 (254,256,258),并且如果方差在可接受的限度内(262),则所得到的信号被缩放(262)并存储(264)作为新的泄漏校准信号。 在混合实施例中,存储的泄漏信号(364)被转换成模拟形式(366),从模拟下变频雷达信号(300)中减去(301),并且在复数I之前由可变增益(303) / Q分量从其中采样(302,304)。 泄漏校准过程(350)每第N次扫描激活(316),其中对于每个光束位置,对M个啁啾波形进行平均(352)并检查方差(354)。 如果方差在可接受的限度内,则泄漏信号被卡尔曼滤波器(356)更新,存储为新的泄漏校准信号(364),并更新卡尔曼增益矩阵(358)。
    • 6. 发明授权
    • Neural network radar processor
    • 神经网络雷达处理器
    • US06366236B1
    • 2002-04-02
    • US09637044
    • 2000-08-11
    • Michael E. FarmerCraig S. JacobsShan Cong
    • Michael E. FarmerCraig S. JacobsShan Cong
    • G01S1300
    • G01S13/584B60R21/0134G01S7/417G01S13/34G01S13/931
    • A neural network radar processor (10) comprises a multilayer perceptron neural network (100.1) comprising an input layer (102), a second layer (122), and at least a third layer (124), wherein each layer has a plurality of nodes (108), and respective subsets of nodes (108) of the second (122) and third (124) layers are interconnected so as to form mutually exclusive subnetworks (120). In-phase and quadrature phase time series from a sampled down-converted FMCW radar signal (19) are applied to the input layer, and the neural network (100) is trained so that the nodes of the output layer (106) are responsive to targets in corresponding range cells, and different subnetworks (120) are responsive to respectively different non-overlapping sets of target ranges. The neural network is trained with signals that are germane to an FMCW radar, including a wide range of target scenarios as well as leakage signals, DC bias signals, and background clutter signals.
    • 神经网络雷达处理器(10)包括包括输入层(102),第二层(122)和至少第三层(124)的多层感知器神经网络(100.1),其中每个层具有多个节点 (108),并且第二(122)和第三(124)层的节点(108)的相应子集互连,以便形成相互排斥的子网(120)。 来自采样的下变频FMCW雷达信号(19)的同相和正交相位时间序列被施加到输入层,并且对神经网络(100)进行训练,使得输出层(106)的节点响应于 相应范围单元中的目标,以及不同的子网(120)对目标范围的分别不同的非重叠集合进行响应。 使用与FMCW雷达相关的信号训练神经网络,包括各种目标场景以及泄漏信号,直流偏置信号和背景杂波信号。