会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Thin film temperature measurement using optical absorption edge wavelength
    • 使用光吸收边缘波长的薄膜温度测量
    • US08786841B2
    • 2014-07-22
    • US13378788
    • 2010-06-21
    • Darryl BarlettCharles A. Taylor, IIBarry D. Wissman
    • Darryl BarlettCharles A. Taylor, IIBarry D. Wissman
    • G01N21/00G01N21/47
    • H01L21/67248H01L22/12
    • A technique for determining the temperature of a sample including a semiconductor film 20 having a measurable optical absorption edge deposited on a transparent substrate 22 of material having no measurable optical absorption edge, such as a GaN film 20 deposited on an Al2O3 substrate 22 for blue and white LEDs. The temperature is determined in realtime as the film 20 grows and increases in thickness. A spectra based on the diffusely scattered light from the film 20 is produced at each incremental thickness. A reference division is performed on each spectra to correct for equipment artifacts. The thickness of the film 20 and an optical absorption edge wavelength value are determined from the spectra. The temperature of the film 20 is determined as a function of the optical absorption edge wavelength and the thickness of the film 20 using the spectra, a thickness calibration table, and a temperature calibration table.
    • 一种用于确定样品的温度的技术,其包括具有沉积在不具有可测量的光吸收边缘的材料的透明基板22上的可测量的光吸收边缘的半导体膜20,例如沉积在用于蓝色的Al 2 O 3衬底22上的GaN膜20,以及 白色LED。 当膜20生长并且厚度增加时,温度是实时测定的。 在每个增量厚度下产生基于来自膜20的漫散射光的光谱。 在每个光谱上执行参考分区以校正设备伪像。 从光谱确定膜20的厚度和光吸收边缘波长值。 使用光谱,厚度校准表和温度校准表,确定膜20的温度作为光吸收边缘波长和膜20的厚度的函数。
    • 3. 发明申请
    • THIN FILM TEMPERATURE MEASUREMENT USING OPTICAL ABSORPTION EDGE WAVELENGTH
    • 使用光学吸收边缘波长的薄膜温度测量
    • US20120133934A1
    • 2012-05-31
    • US13378788
    • 2010-06-21
    • Darryl BarlettCharles A. Taylor, IIBarry D. Wissman
    • Darryl BarlettCharles A. Taylor, IIBarry D. Wissman
    • G01J3/28G01J5/00
    • H01L21/67248H01L22/12
    • A technique for determining the temperature of a sample including a semiconductor film 20 having a measurable optical absorption edge deposited on a transparent substrate 22 of material having no measurable optical absorption edge, such as a GaN film 20 deposited on an Al2O3 substrate 20 for blue and white LEDs. The temperature is determined in real-time as the film 20 grows and increases in thickness. A spectra based on the diffusely scattered light from the film 20 is produced at each incremental thickness. A reference division is performed on each spectra to correct for equipment artifacts. The thickness of the film 20 and an optical absorption edge wavelength value are determined from the spectra. The temperature of the film 20 is determined as a function of the optical absorption edge wavelength and the thickness of the film 20 using the spectra, a thickness calibration table, and a temperature calibration table.
    • 一种用于确定样品的温度的技术,包括沉积在不具有可测量的光吸收边缘的材料的透明基板22上的可测量的光吸收边缘的半导体膜20,例如沉积在用于蓝色的Al 2 O 3衬底20上的GaN膜20,以及 白色LED。 随着膜20的生长和厚度的增加,实时测定温度。 在每个增量厚度下产生基于来自膜20的漫散射光的光谱。 在每个光谱上执行参考分区以校正设备伪像。 从光谱确定膜20的厚度和光吸收边缘波长值。 使用光谱,厚度校准表和温度校准表,确定膜20的温度作为光吸收边缘波长和膜20的厚度的函数。
    • 4. 发明授权
    • Method and system for patient-specific modeling of blood flow
    • 血流特异性建模方法与系统
    • US08157742B2
    • 2012-04-17
    • US13290476
    • 2011-11-07
    • Charles A. Taylor
    • Charles A. Taylor
    • A61B5/02
    • A61B5/026A61B5/02007G06F19/00G16H50/50
    • Embodiments include a system for planning treatment for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of an anatomical structure of the patient, create a three-dimensional model representing at least a portion of the anatomical structure of the patient based on the patient-specific data, and determine a first fractional flow reserve within the anatomical structure of the patient based on the three-dimensional model and a physics-based model relating to the anatomical structure of the patient. The at least one computer system may be further configured to modify the three-dimensional model, and determine a second fractional flow reserve within the anatomical structure of the patient based on the modified three-dimensional model.
    • 实施例包括用于规划患者治疗的系统。 该系统可以包括被配置为接收关于患者的解剖结构的几何形状的患者特定数据的至少一个计算机系统,基于患者的身份创建表示患者的解剖结构的至少一部分的三维模型, 并且基于三维模型和与患者的解剖结构相关的基于物理的模型来确定患者的解剖结构内的第一分数流量储备。 所述至少一个计算机系统还可被配置为修改三维模型,并且基于修改的三维模型确定患者的解剖结构内的第二分数流量储备。
    • 7. 发明授权
    • Curvature/tilt metrology tool with closed loop feedback control
    • 具有闭环反馈控制的曲率/倾斜计量工具
    • US07391523B1
    • 2008-06-24
    • US10858358
    • 2004-06-01
    • Charles A. Taylor, IIDarryl BarlettDouglas PerryRoy Clarke
    • Charles A. Taylor, IIDarryl BarlettDouglas PerryRoy Clarke
    • G01B11/24
    • G01B11/2522
    • Apparatus for quantitatively measuring the curvature and/or relative tilt of large surfaces wherein a small array of parallel laser beams, each separated by a known distance, reflect from the surface of a sample and fall upon a feedback controlled front-surface steering mirror to a detector that measures both the change in separation of the reflected beams and the spatial translation of the entire array on the detector. The sample surface is translated beneath or in front of the fixed laser array by means of a computer controlled stage or other apparatus to create a 1-dimensional line scan or 2-dimensional map of both bow and relative tilt of the sample surface. A computer-driven, feedback-controlled steering mirror compensates for varying sample tilt by precisely realigning the reflected laser array onto the detector as the sample is translated. The apparatus also utilizes a laser with intensity feedback control to continuously optimize the reflected laser power for varying surface reflectivity as the sample is translated. This combination provides a means to quantitatively measure curvature and relative tilt of sample areas much larger than the actual laser beam array size.
    • 用于定量测量大表面的曲率和/或相对倾斜度的装置,其中每一个分开一段已知距离的平行激光束阵列从样品的表面反射并落在反馈控制的前表面导向镜上, 检测器测量反射光束的分离变化和检测器上整个阵列的空间平移。 样品表面借助于计算机控制级或其它装置在固定激光器阵列下方或前方平移,以产生样品表面的弓形和相对倾斜的一维线扫描或二维图。 计算机驱动的反馈控制的转向镜通过在反射样本被翻译时将反射的激光器阵列精确地重新配置到检测器上来补偿不同的样品倾斜。 该设备还利用具有强度反馈控制的激光器来连续优化反射激光功率,以在样品平移时改变表面反射率。 该组合提供了一种用于定量测量样品区域的曲率和相对倾斜度的方法,该样品区域远大于实际的激光束阵列尺寸。
    • 8. 发明授权
    • Method for determining cardiovascular information
    • 心血管信息的确定方法
    • US09405886B2
    • 2016-08-02
    • US12661491
    • 2010-03-17
    • Charles A TaylorHyun Jin KimJessica S. Coogan
    • Charles A TaylorHyun Jin KimJessica S. Coogan
    • G06F19/16G06F19/00
    • G06F19/3437G06F19/00G06F19/321G16H10/60G16H50/50
    • A noninvasive patient-specific method is provided to aid in the analysis, diagnosis, prediction or treatment of hemodynamics of the cardiovascular system of a patient. Coronary blood flow and pressure can be predicted using a 3-D patient image-based model that is implicitly coupled with a model of at least a portion of the remaining cardiovascular system. The 3-D patient image-based model includes at least a portion of the thoracic aorta and epicardial coronaries of the patient. The shape of one or more velocity profiles at the interface of the models is enforced to control complex flow features of recirculating or retrograde flow thereby minimizing model instabilities and resulting in patient-specific predictions of coronary flow rate and pressure. The invention allows for patient-specific predictions of the effect of different or varying physiological states and hemodynamic benefits of coronary medical interventions, percutaneous coronary interventions and surgical therapies.
    • 提供非侵入性患者特异性方法来帮助分析,诊断,预测或治疗患者心血管系统的血液动力学。 可以使用与至少一部分剩余心血管系统的模型隐含耦合的基于3-D患者图像的模型来预测冠状动脉血流和压力。 3-D患者基于图像的模型包括患者的胸主动脉和心外膜冠状动脉的至少一部分。 模型界面处的一个或多个速度分布的形状被强制以控制循环或逆行流的复杂流动特征,从而最小化模型不稳定性,并导致患者对冠状动脉血流速率和压力的预测。 本发明允许患者特异性预测冠状动脉介入治疗,经皮冠状动脉介入治疗和手术治疗的不同或不同生理状态和血液动力学益处的影响。