会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Integrated circuit trenched features and method of producing same
    • 集成电路沟槽特征及其制造方法
    • US06780765B2
    • 2004-08-24
    • US10101905
    • 2002-03-19
    • Avery N. Goldstein
    • Avery N. Goldstein
    • H01L2144
    • H01L21/288H01L21/76877H01L23/53228H01L23/53238H01L2924/0002H01L2924/00
    • A metal processing method is provided for growing a polycrystalline film by preferably chemical vapor deposition (CVD) from a suitable precursor gas or gases on a substrate which has been coated with seeds, preferably of nanocrystal size, of the metal material. The nanocrystal seeds serve as a template for the structure of the final polycrystalline film. The density of the seeds and the thickness of the grown polycrystalline film determine the grain size of the polycrystalline film at the surface of said film. CVD onto the seeds to produce the polycrystalline film avoids the recrystallization step generally necessary for the formation of a polycrystalline film, and thus allows for the growth of polycrystalline films at reduced temperatures.
    • 提供一种金属加工方法,用于通过优选化学气相沉积(CVD)从已经涂覆有金属材料的种子,优选纳米晶体尺寸的基底上的合适的前体气体生长多晶膜。 纳米晶体种子用作最终多晶膜结构的模板。 种子的密度和生长的多晶膜的厚度决定了所述膜的表面处的多晶膜的晶粒尺寸。 种子上的CVD以产生多晶膜避免了形成多晶膜所需的重结晶步骤,从而允许在降低的温度下生长多晶膜。
    • 2. 发明授权
    • Dibasic acid based phase change material compositions
    • 基于二元酸的相变材料组成
    • US5755988A
    • 1998-05-26
    • US702821
    • 1996-08-23
    • George A. LaneAvery N. Goldstein
    • George A. LaneAvery N. Goldstein
    • C09K5/06
    • C09K5/063
    • A process for moderating the thermal energy content of a body with a container enclosing a phase change material (PCM) is detailed. The phase change material comprises a high molecular weight dibasic organic acid and mixtures thereof. Miscible aliphatic and aryl monobasic acids are also suitable as PCM constituents. The PCM is capable of absorbing thermal energy from a variety of bodies including air, heat transfer fluids, combustion reactions, radiation sources and the like. In the course of absorbing thermal energy the PCM undergoes a reversible melt. Upon the PCM being exposed to a temperature below its melting temperature, the PCM releases the stored latent heat of fusion energy absorbed upon melting and undergoes a reversible freeze.
    • 详细说明了用封闭相变材料(PCM)的容器调节身体的热能含量的方法。 相变材料包括高分子量二元有机酸及其混合物。 可混溶的脂族和芳基一元酸也适合作为PCM组分。 PCM能够从各种物体吸收热能,包括空气,传热流体,燃烧反应,辐射源等。 在吸收热能的过程中,PCM经历可逆的熔体。 当PCM暴露于低于其熔融温度的温度时,PCM释放储存的熔化时吸收的潜热潜热并经历可逆冻结。
    • 5. 发明授权
    • Integrated circuit trenched features and method of producing same
    • 集成电路沟槽特征及其制造方法
    • US06277740B1
    • 2001-08-21
    • US09373295
    • 1999-08-12
    • Avery N. Goldstein
    • Avery N. Goldstein
    • H01L2144
    • H01L23/53228H01L21/288H01L21/76877H01L23/53238H01L2924/0002H01L2924/00
    • The formation of microelectronic structures in trenches and vias of an integrated circuit wafer are described using nanocrystal solutions. A nanocrystal solution is applied to flood the wafer surface. The solvent penetrates the trench recesses within the wafer surface. In the process, nanocrystals dissolved or suspended in the solution are carried into these regions. The solvent volatilizes more quickly from the wafer plateaus as compared to the recesses causing the nanocrystals to become concentrated in the shrinking solvent pools within the recesses. The nanocrystals become stranded in the dry trenches. Heating the wafer to a temperature sufficient to sinter or melt the nanocrystals results in the formation of bulk polycrystalline domains. Heating is also carried out concurrently with nanocrystals solution deposition. Copper nanocrystals of less than about 5 nanometers are particularly well suited for formation of interconnects at temperatures of less than 350 degrees Celcius.
    • 使用纳米晶体解决方案描述了集成电路晶片的沟槽和通孔中微电子结构的形成。 应用纳米晶体溶液来淹没晶片表面。 溶剂渗透晶片表面内的沟槽凹槽。 在此过程中,将溶解或悬浮在溶液中的纳米晶体进入这些区域。 与凹部相比,溶剂从晶片平台更快地挥发,导致纳米晶体在凹陷内的收缩溶剂池中变浓。 纳米晶体滞留在干沟中。 将晶片加热到足以烧结或熔化纳米晶体的温度导致大块多晶畴的形成。 加热也与纳米晶溶液沉积同时进行。 小于约5纳米的铜纳米晶体特别适用于在小于350摄氏度的温度下形成互连。
    • 7. 发明授权
    • Group IV semiconductor thin films formed at low temperature using
nanocrystal precursors
    • 使用纳米晶体前体在低温下形成的IV族半导体薄膜
    • US5576248A
    • 1996-11-19
    • US217160
    • 1994-03-24
    • Avery N. Goldstein
    • Avery N. Goldstein
    • H01L21/20C23C26/02G03F1/22H01L21/208
    • G03F1/22C23C26/02H01L21/02532H01L21/02601H01L21/02628H01L21/02667
    • Thin films of the Group IV materials silicon and germanium are produced in the range of 2.5 to 25 nm thick from nanocrystal precursors. According to the invention a solid, continuous film of silicon or germanium is formed by depositing a contiguous layer of nanocrystals of the semi-conductor materials onto a substrate, then heating the layer to a temperature below the bulk melting temperature which is nonetheless adequate to melt the nanocrystals and form a continuous liquid thin film upon cooling. The resulting thin film may be doped or intrinsic. The lower processing temperatures make it possible to form these thin semi-conductor films with less stringent thermal requirements on the underlayers, substrates and other related structures, thus supporting applications in microelectronics, solar conversion and so forth.
    • 第IV族材料的硅和锗的薄膜从纳米晶体前体制备在2.5至25nm厚的范围内。 根据本发明,通过将半导体材料的连续的纳米晶体层沉积到衬底上而形成硅或锗的固体连续薄膜,然后将该层加热至低于本体熔融温度的温度,该温度仍足以熔化 纳米晶体,并在冷却时形成连续的液体薄膜。 所得薄膜可以是掺杂的或固有的。 较低的加工温度使得可以在衬底,衬底和其他相关结构上形成对这些薄的半导体膜的热要求较低,从而支持微电子学,太阳能转换等领域的应用。