会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Harnessing machine learning to improve the success rate of stimuli generation
    • 利用机器学习提高刺激生成的成功率
    • US20070011631A1
    • 2007-01-11
    • US11177127
    • 2005-07-07
    • Shai FineAri FreundItai JaegerYehuda NavehAvi Ziv
    • Shai FineAri FreundItai JaegerYehuda NavehAvi Ziv
    • G06F17/50
    • G01R31/318357
    • Test generation is improved by learning the relationship between an initial state vector for a stimuli generator and generation success. A stimuli generator for a design-under-verification is provided with information about the success probabilities of potential assignments to an initial state bit vector. Selection of initial states according to the success probabilities ensures a higher success rate than would be achieved without this knowledge. The approach for obtaining an initial state bit vector employs a CSP solver. A learning system is directed to model the behavior of possible initial state assignments. The learning system develops the structure and parameters of a Bayesian network that describes the relation between the initial state and generation success.
    • 通过学习刺激发生器的初始状态向量与生成成功之间的关系来提高测试生成。 提供了一种用于未验证设计的刺激发生器,其中提供了关于初始状态位向量的潜在分配的成功概率的信息。 根据成功概率选择初始状态确保比没有这种知识将获得的成功率更高的成功率。 用于获得初始状态位向量的方法采用CSP求解器。 学习系统旨在模拟可能的初始状态分配的行为。 学习系统开发了贝叶斯网络的结构和参数,描述了初始状态与发电成功之间的关系。
    • 3. 发明授权
    • Harnessing machine learning to improve the success rate of stimuli generation
    • 利用机器学习提高刺激生成的成功率
    • US07331007B2
    • 2008-02-12
    • US11177127
    • 2005-07-07
    • Shai FineAri FreundItai JaegerYehuda NavehAvi Ziv
    • Shai FineAri FreundItai JaegerYehuda NavehAvi Ziv
    • G06F11/00G06F17/50
    • G01R31/318357
    • Test generation is improved by learning the relationship between an initial state vector for a stimuli generator and generation success. A stimuli generator for a design-under-verification is provided with information about the success probabilities of potential assignments to an initial state bit vector. Selection of initial states according to the success probabilities ensures a higher success rate than would be achieved without this knowledge. The approach for obtaining an initial state bit vector employs a CSP solver. A learning system is directed to model the behavior of possible initial state assignments. The learning system develops the structure and parameters of a Bayesian network that describes the relation between the initial state and generation success.
    • 通过学习刺激发生器的初始状态向量与生成成功之间的关系来提高测试生成。 提供了一种用于未验证设计的刺激发生器,其中提供了关于初始状态位向量的潜在分配的成功概率的信息。 根据成功概率选择初始状态确保比没有这种知识将获得的成功率更高的成功率。 用于获得初始状态位向量的方法采用CSP求解器。 学习系统旨在模拟可能的初始状态分配的行为。 学习系统开发了贝叶斯网络的结构和参数,描述了初始状态与发电成功之间的关系。