会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • LED flashlight with battery life indicator
    • LED手电筒,带电池寿命指示灯
    • US08463565B1
    • 2013-06-11
    • US13336796
    • 2011-12-23
    • Ralph OsterhoutMichael J. KeatingAntony Van der Mude
    • Ralph OsterhoutMichael J. KeatingAntony Van der Mude
    • G01R31/36
    • F21L4/005H01M10/443H02J7/0047
    • A flashlight includes a light powered by a battery, and a circuit having: a memory for storing a battery life information and voltage output information versus time for the battery to power the light, a controller operating a count down timer to accumulate an amount of time that the battery powers the light, a voltage measure circuit for monitoring the voltage output by the battery while the battery powers the light and supply the voltage output to the controller. The controller determines: a first remaining battery life by comparing the accumulated time to the battery life, a second remaining battery life by comparing the voltage output to the voltage output information, and the lesser of the first and second remaining battery lives. The flashlight includes a display for receiving a command from the controller to display the lesser of the first remaining battery life and the second remaining battery life.
    • 手电筒包括由电池供电的光,以及电路,具有:存储器,用于存储电池寿命信息和电压输出信息对电池供电的时间,控制器操作倒计时定时器以累积一定时间量 电池为光源供电,一个电压测量电路,用于在电池供电并向控制器提供电压输出时监视电池输出的电压。 所述控制器通过将所述累积时间与所述电池寿命进行比较来确定第一剩余电池寿命,通过将所述电压输出与所述电压输出信息进行比较来计算第二剩余电池寿命,以及所述第一和第二剩余电池寿命中的较小者。 手电筒包括用于从控制器接收命令以显示第一剩余电池寿命和第二剩余电池寿命中的较小者的显示器。
    • 2. 发明授权
    • Method for building a natural language understanding model for a spoken dialog system
    • 建立语言对话系统的自然语言理解模型的方法
    • US07620550B1
    • 2009-11-17
    • US11866685
    • 2007-10-03
    • Narendra K. GuptaMazin G. RahimGokhan TurAntony Van der Mude
    • Narendra K. GuptaMazin G. RahimGokhan TurAntony Van der Mude
    • G10L15/18
    • G10L15/193G10L15/063G10L15/183
    • A method of generating a natural language model for use in a spoken dialog system is disclosed. The method comprises using sample utterances and creating a number of hand crafted rules for each call-type defined in a labeling guide. A first NLU model is generated and tested using the hand crafted rules and sample utterances. A second NLU model is built using the sample utterances as new training data and using the hand crafted rules. The second NLU model is tested for performance using a first batch of labeled data. A series of NLU models are built by adding a previous batch of labeled data to training data and using a new batch of labeling data as test data to generate the series of NLU models with training data that increases constantly. If not all the labeling data is received, the method comprises repeating the step of building a series of NLU models until all labeling data is received. After all the training data is received, at least once, the method comprises building a third NLU model using all the labeling data, wherein the third NLU model is used in generating the spoken dialog service.
    • 公开了一种生成在口头对话系统中使用的自然语言模型的方法。 该方法包括对标签指南中定义的每个呼叫类型使用样本话语和创建许多手工制作规则。 使用手工制作的规则和样品说话来生成和测试第一个NLU模型。 使用示例语句作为新的训练数据并使用手工制作规则构建了第二个NLU模型。 使用第一批标签数据对第二个NLU模型进行性能测试。 通过将前一批标签数据添加到训练数据并使用新批签名数据作为测试数据来生成一系列NLU模型,训练数据不断增加,构建了一系列NLU模型。 如果不是全部接收到标签数据,则该方法包括重复建立一系列NLU模型的步骤,直到接收到所有标记数据为止。 在接收到所有训练数据之后,至少一次,该方法包括使用所有标签数据构建第三NLU模型,其中第三NLU模型用于生成口语对话服务。
    • 3. 发明授权
    • LED flashlight with battery life indicator
    • LED手电筒,带电池寿命指示灯
    • US08104915B1
    • 2012-01-31
    • US12467828
    • 2009-05-18
    • Ralph OsterhoutMichael J KeatingAntony Van der Mude
    • Ralph OsterhoutMichael J KeatingAntony Van der Mude
    • F21L4/04
    • F21L4/005H01M10/443H02J7/0047
    • A flashlight includes a light powered by a battery, and a circuit having: a memory for storing a battery life information and voltage output information versus time for the battery to power the light, a controller operating a count down timer to accumulate an amount of time that the battery powers the light, a voltage measure circuit for monitoring the voltage output by the battery while the battery powers the light and supply the voltage output to the controller. The controller determines: a first remaining battery life by comparing the accumulated time to the battery life, a second remaining battery life by comparing the voltage output to the voltage output information, and the lesser of the first and second remaining battery lives. The flashlight includes a display for receiving a command from the controller to display the lesser of the first remaining battery life and the second remaining battery life.
    • 手电筒包括由电池供电的光,以及电路,具有:存储器,用于存储电池寿命信息和电压输出信息对电池供电的时间,控制器操作倒计时定时器以累积一定时间量 电池为光源供电,一个电压测量电路,用于在电池供电并向控制器提供电压输出时监视电池输出的电压。 所述控制器通过将所述累积时间与所述电池寿命进行比较来确定第一剩余电池寿命,通过将所述电压输出与所述电压输出信息进行比较来计算第二剩余电池寿命,以及所述第一和第二剩余电池寿命中的较小者。 手电筒包括用于从控制器接收命令以显示第一剩余电池寿命和第二剩余电池寿命中的较小者的显示器。
    • 4. 发明申请
    • METHOD FOR BUILDING A NATURAL LANGUAGE UNDERSTANDING MODEL FOR A SPOKEN DIALOG SYSTEM
    • 用于建立自然语言的方法来理解对讲机系统的模型
    • US20100042404A1
    • 2010-02-18
    • US12582062
    • 2009-10-20
    • Narendra K. GuptaMazin G. RahimGokhan TurAntony Van der Mude
    • Narendra K. GuptaMazin G. RahimGokhan TurAntony Van der Mude
    • G10L15/18G06F17/27
    • G10L15/193G10L15/063G10L15/183
    • A method of generating a natural language model for use in a spoken dialog system is disclosed. The method comprises using sample utterances and creating a number of hand crafted rules for each call-type defined in a labeling guide. A first NLU model is generated and tested using the hand crafted rules and sample utterances. A second NLU model is built using the sample utterances as new training data and using the hand crafted rules. The second NLU model is tested for performance using a first batch of labeled data. A series of NLU models are built by adding a previous batch of labeled data to training data and using a new batch of labeling data as test data to generate the series of NLU models with training data that increases constantly. If not all the labeling data is received, the method comprises repeating the step of building a series of NLU models until all labeling data is received. After all the training data is received, at least once, the method comprises building a third NLU model using all the labeling data, wherein the third NLU model is used in generating the spoken dialog service.
    • 公开了一种生成在口头对话系统中使用的自然语言模型的方法。 该方法包括对标签指南中定义的每个呼叫类型使用样本话语和创建许多手工制作规则。 使用手工制作的规则和样品说话来生成和测试第一个NLU模型。 使用示例语句作为新的训练数据并使用手工制作规则构建了第二个NLU模型。 使用第一批标签数据对第二个NLU模型进行性能测试。 通过将前一批标签数据添加到训练数据并使用新批签名数据作为测试数据来生成一系列NLU模型,训练数据不断增加,构建了一系列NLU模型。 如果不是全部接收到标签数据,则该方法包括重复建立一系列NLU模型的步骤,直到接收到所有标记数据为止。 在接收到所有训练数据之后,至少一次,该方法包括使用所有标签数据构建第三NLU模型,其中第三NLU模型用于生成口语对话服务。
    • 5. 发明授权
    • Method for building a natural language understanding model for a spoken dialog system
    • 建立语言对话系统的自然语言理解模型的方法
    • US07933766B2
    • 2011-04-26
    • US12582062
    • 2009-10-20
    • Narendra K. GuptaMazin G. RahimGokhan TurAntony Van der Mude
    • Narendra K. GuptaMazin G. RahimGokhan TurAntony Van der Mude
    • G06F17/27
    • G10L15/193G10L15/063G10L15/183
    • A method of generating a natural language model for use in a spoken dialog system is disclosed. The method comprises using sample utterances and creating a number of hand crafted rules for each call-type defined in a labeling guide. A first NLU model is generated and tested using the hand crafted rules and sample utterances. A second NLU model is built using the sample utterances as new training data and using the hand crafted rules. The second NLU model is tested for performance using a first batch of labeled data. A series of NLU models are built by adding a previous batch of labeled data to training data and using a new batch of labeling data as test data to generate the series of NLU models with training data that increases constantly. If not all the labeling data is received, the method comprises repeating the step of building a series of NLU models until all labeling data is received. After all the training data is received, at least once, the method comprises building a third NLU model using all the labeling data, wherein the third NLU model is used in generating the spoken dialog service.
    • 公开了一种生成在口头对话系统中使用的自然语言模型的方法。 该方法包括对标签指南中定义的每个呼叫类型使用样本话语和创建许多手工制作规则。 使用手工制作的规则和样品说话来生成和测试第一个NLU模型。 使用示例语句作为新的训练数据并使用手工制作规则构建了第二个NLU模型。 使用第一批标签数据对第二个NLU模型进行性能测试。 通过将前一批标签数据添加到训练数据并使用新批签名数据作为测试数据来生成一系列NLU模型,训练数据不断增加,构建了一系列NLU模型。 如果不是全部接收到标签数据,则该方法包括重复建立一系列NLU模型的步骤,直到接收到所有标记数据为止。 在接收到所有训练数据之后,至少一次,该方法包括使用所有标签数据构建第三NLU模型,其中第三NLU模型用于生成口语对话服务。
    • 6. 发明授权
    • Method for building a natural language understanding model for a spoken dialog system
    • 建立语言对话系统的自然语言理解模型的方法
    • US07295981B1
    • 2007-11-13
    • US10755014
    • 2004-01-09
    • Narendra K. GuptaMazin G. RahimGokhan TurAntony Van der Mude
    • Narendra K. GuptaMazin G. RahimGokhan TurAntony Van der Mude
    • G10L15/18
    • G10L15/193G10L15/063G10L15/183
    • A method of generating a natural language model for use in a spoken dialog system is disclosed. The method comprises using sample utterances and creating a number of hand crafted rules for each call-type defined in a labeling guide. A first NLU model is generated and tested using the hand crafted rules and sample utterances. A second NLU model is built using the sample utterances as new training data and using the hand crafted rules. The second NLU model is tested for performance using a first batch of labeled data. A series of NLU models are built by adding a previous batch of labeled data to training data and using a new batch of labeling data as test data to generate the series of NLU models with training data that increases constantly. If not all the labeling data is received, the method comprises repeating the step of building a series of NLU models until all labeling data is received. After all the training data is received, at least once, the method comprises building a third NLU model using all the labeling data, wherein the third NLU model is used in generating the spoken dialog service.
    • 公开了一种生成在口头对话系统中使用的自然语言模型的方法。 该方法包括对标签指南中定义的每个呼叫类型使用样本话语和创建许多手工制作规则。 使用手工制作的规则和样品说话来生成和测试第一个NLU模型。 使用示例语句作为新的训练数据并使用手工制作规则构建了第二个NLU模型。 使用第一批标签数据对第二个NLU模型进行性能测试。 通过将前一批标签数据添加到训练数据并使用新批签名数据作为测试数据来生成一系列NLU模型,训练数据不断增加,构建了一系列NLU模型。 如果不是全部接收到标签数据,则该方法包括重复建立一系列NLU模型的步骤,直到接收到所有标记数据为止。 在接收到所有训练数据之后,至少一次,该方法包括使用所有标签数据构建第三NLU模型,其中第三NLU模型用于生成口语对话服务。