会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • Server-side eventing for managed server applications
    • 受管服务器应用程序的服务器端事件
    • US20060136933A1
    • 2006-06-22
    • US11015062
    • 2004-12-17
    • Aaron JensenAmeya Bhatawdekar
    • Aaron JensenAmeya Bhatawdekar
    • G06F9/46
    • G06F9/542
    • The present invention relates to a system for generating events for a server application executing in a first process on a server computer. The system includes a server event service on the server computer executing in a second process independent of the first process. The server event service has a plurality of event handlers each event handler associated with a specified server event. The server event service is capable of receiving a server event from the server application and identifying one or more event handlers associated with the server event. The server event service then passes information related to the server event to the identified event handlers. The event handlers, in response to receiving the information related to an associated server event, generates one or more output events for the server application. In the system, the server event is generated by the server application in response to a request received from a client application on a remote client computer.
    • 本发明涉及一种用于为在服务器计算机上的第一进程中执行的服务器应用程序生成事件的系统。 该系统包括在独立于第一进程的第二进程中执行的服务器计算机上的服务器事件服务。 服务器事件服务具有多个事件处理程序,每个事件处理程序与指定的服务器事件相关联。 服务器事件服务能够从服务器应用程序接收服务器事件,并识别与服务器事件相关联的一个或多个事件处理程序。 然后,服务器事件服务将与服务器事件相关的信息传递给标识的事件处理程序。 事件处理程序响应于接收到与关联的服务器事件相关的信息,为服务器应用程序生成一个或多个输出事件。 在系统中,响应于从远程客户端计算机上的客户端应用程序接收的请求,服务器应用程序生成服务器事件。
    • 5. 发明授权
    • Identifying application reputation based on resource accesses
    • 基于资源访问识别应用程序信誉
    • US09065826B2
    • 2015-06-23
    • US13205136
    • 2011-08-08
    • Ryan Charles ColvinElliott Jeb HaberAmeya BhatawdekarAnthony P. Penta
    • Ryan Charles ColvinElliott Jeb HaberAmeya BhatawdekarAnthony P. Penta
    • G06F21/00H04L29/06G06F21/53G06F21/62H04L12/24
    • H04L63/10G06F21/53G06F21/6218G06F2221/2141H04L41/0893H04L63/145
    • Malware detection is often based on monitoring a local application binary and/or process, such as detecting patterns of malicious code, unusual local resource utilization, or suspicious application behavior. However, the volume of available software, variety of malware, and sophistication of evasion techniques may reduce the effectiveness of detection based on monitoring local resources. Presented herein are techniques for identifying malware based on the reputations of remote resources (e.g., web content, files, databases, IP addresses, services, and users) accessed by an application. Remote resource accesses may be reported to a reputation service, which may identify reputations of remote resources, and application reputations of applications that utilize such remote resources. These application reputations may be used to adjust the application policies of the applications executed by devices and servers. These techniques thereby achieve rapid detection and mitigation of newly identified malware through application telemetry in a predominantly automated manner.
    • 恶意软件检测通常基于监视本地应用程序二进制和/或进程,例如检测恶意代码的模式,异常的本地资源利用率或可疑应用程序行为。 然而,可用软件的数量,各种恶意软件和复杂的逃避技术可能会降低基于监视本地资源的检测的有效性。 这里提出的是基于由应用访问的远程资源(例如,web内容,文件,数据库,IP地址,服务和用户)的声誉来识别恶意软件的技术。 远程资源访问可以被报告给信誉服务,信誉服务可以识别远程资源的信誉,以及利用这种远程资源的应用程序的应用程序信誉。 这些应用程序信誉可以用于调整由设备和服务器执行的应用程序的应用程序策略。 这些技术从而通过主要以自动化的方式通过应用遥测来实现对新识别的恶意软件的快速检测和缓解。
    • 7. 发明授权
    • Translating a relational query to a multidimensional query
    • 将关系查询转换为多维查询
    • US08606803B2
    • 2013-12-10
    • US12060279
    • 2008-04-01
    • Ameya BhatawdekarAlan HebertKarthik SubramanyamMauli ShahJian H. Li
    • Ameya BhatawdekarAlan HebertKarthik SubramanyamMauli ShahJian H. Li
    • G06F17/30H04L12/58
    • H04L12/58G06F17/30592H04L51/00
    • Data stored in relational databases can be retrieved using a relational database query language, while data stored in a multidimensional database is typically retrieved using a multidimensional database query language. However, most users do not have a functional working knowledge of multidimensional database query languages, which leaves large amounts of data inaccessible. Further, while some relational database query languages may be translated into a multidimensional database language, the information generated by such translations is often unusable, or returns large numbers of errors. In order to obtain effective translation of a relational database query language to a multidimensional database query language effective translation and filtering needs to occur. Using effective mapping and retrieval of database metadata along with effective, customizable business logic filtering of query components, more effective and reliable results may be achieved.
    • 可以使用关系数据库查询语言来检索存储在关系数据库中的数据,而通常使用多维数据库查询语言检索存储在多维数据库中的数据。 然而,大多数用户没有多维数据库查询语言的功能工作知识,这使得大量数据无法访问。 此外,虽然一些关系数据库查询语言可以被翻译成多维数据库语言,但是由这种翻译生成的信息通常是不可用的或者返回大量的错误。 为了获得关系数据库查询语言到多维数据库查询语言的有效翻译,需要有效的翻译和过滤。 利用数据库元数据的有效映射和检索以及有效的可定制的查询组件的业务逻辑过滤,可以实现更有效和可靠的结果。
    • 8. 发明申请
    • DATABASE QUERYING
    • 数据库查询
    • US20090249125A1
    • 2009-10-01
    • US12060279
    • 2008-04-01
    • Ameya BhatawdekarAlan HebertKarthik SubramanyamMauli ShahJian H. Li
    • Ameya BhatawdekarAlan HebertKarthik SubramanyamMauli ShahJian H. Li
    • G06F7/06G06F17/30G06F11/07
    • H04L12/58G06F17/30592H04L51/00
    • Data stored in relational databases can be retrieved using a relational database query language, while data stored in a multidimensional database is typically retrieved using a multidimensional database query language. However, most users do not have a functional working knowledge of multidimensional database query languages, which leaves large amounts of data inaccessible. Further, while some relational database query languages may be translated into a multidimensional database language, the information generated by such translations is often unusable, or returns large numbers of errors. In order to obtain effective translation of a relational database query language to a multidimensional database query language effective translation and filtering needs to occur. Using effective mapping and retrieval of database metadata along with effective, customizable business logic filtering of query components, more effective and reliable results may be achieved.
    • 可以使用关系数据库查询语言来检索存储在关系数据库中的数据,而通常使用多维数据库查询语言检索存储在多维数据库中的数据。 然而,大多数用户没有多维数据库查询语言的功能工作知识,这使得大量的数据无法访问。 此外,虽然一些关系数据库查询语言可以被翻译成多维数据库语言,但是由这种翻译生成的信息通常是不可用的或者返回大量的错误。 为了获得关系数据库查询语言到多维数据库查询语言的有效翻译,需要有效的翻译和过滤。 利用数据库元数据的有效映射和检索以及有效的可定制的查询组件的业务逻辑过滤,可以实现更有效和可靠的结果。
    • 10. 发明申请
    • IDENTIFYING APPLICATION REPUTATION BASED ON RESOURCE ACCESSES
    • 基于资源访问识别应用程序信誉
    • US20130042294A1
    • 2013-02-14
    • US13205136
    • 2011-08-08
    • Ryan Charles ColvinElliott Jeb HaberAmeya BhatawdekarAnthony P. Penta
    • Ryan Charles ColvinElliott Jeb HaberAmeya BhatawdekarAnthony P. Penta
    • G06F21/00G06F17/00G06F11/00
    • H04L63/10G06F21/53G06F21/6218G06F2221/2141H04L41/0893H04L63/145
    • Malware detection is often based on monitoring a local application binary and/or process, such as detecting patterns of malicious code, unusual local resource utilization, or suspicious application behavior. However, the volume of available software, variety of malware, and sophistication of evasion techniques may reduce the effectiveness of detection based on monitoring local resources. Presented herein are techniques for identifying malware based on the reputations of remote resources (e.g., web content, files, databases, IP addresses, services, and users) accessed by an application. Remote resource accesses may be reported to a reputation service, which may identify reputations of remote resources, and application reputations of applications that utilize such remote resources. These application reputations may be used to adjust the application policies of the applications executed by devices and servers. These techniques thereby achieve rapid detection and mitigation of newly identified malware through application telemetry in a predominantly automated manner.
    • 恶意软件检测通常基于监视本地应用程序二进制和/或进程,例如检测恶意代码的模式,异常的本地资源利用率或可疑应用程序行为。 然而,可用软件的数量,各种恶意软件和复杂的逃避技术可能会降低基于监视本地资源的检测的有效性。 这里提出的是基于由应用访问的远程资源(例如,web内容,文件,数据库,IP地址,服务和用户)的声誉来识别恶意软件的技术。 远程资源访问可以被报告给信誉服务,信誉服务可以识别远程资源的信誉,以及利用这种远程资源的应用程序的应用程序信誉。 这些应用程序信誉可以用于调整由设备和服务器执行的应用程序的应用程序策略。 这些技术从而通过主要以自动化的方式通过应用遥测来实现对新识别的恶意软件的快速检测和缓解。