会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Neural-Network Based Surrogate Model Construction Methods and Applications Thereof
    • 基于神经网络的代理模型构建方法及应用
    • US20080228680A1
    • 2008-09-18
    • US12048045
    • 2008-03-13
    • Dingding ChenAllan ZhongSyed HamidStanley Stephenson
    • Dingding ChenAllan ZhongSyed HamidStanley Stephenson
    • G06F15/18
    • G06N3/0454B33Y80/00
    • Various neural-network based surrogate model construction methods are disclosed herein, along with various applications of such models. Designed for use when only a sparse amount of data is available (a “sparse data condition”), some embodiments of the disclosed systems and methods: create a pool of neural networks trained on a first portion of a sparse data set; generate for each of various multi-objective functions a set of neural network ensembles that minimize the multi-objective function; select a local ensemble from each set of ensembles based on data not included in said first portion of said sparse data set; and combine a subset of the local ensembles to form a global ensemble. This approach enables usage of larger candidate pools, multi-stage validation, and a comprehensive performance measure that provides more robust predictions in the voids of parameter space.
    • 本文公开了各种基于神经网络的替代模型构建方法,以及这些模型的各种应用。 设计为仅在少量数据可用时使用(“稀疏数据条件”),所公开的系统和方法的一些实施例:创建在稀疏数据集的第一部分上训练的神经网络池; 为各种多目标函数中的每一个生成一组最小化多目标函数的神经网络集合; 基于不包括在所述稀疏数据集的所述第一部分中的数据,从每组集合中选择本地集合; 并组合一个本地组合的子集以形成全局集合。 这种方法使得可以使用更大的候选池,多级验证以及综合性能测量,从而在参数空间的空白中提供更强大的预测。
    • 2. 发明授权
    • Neural-network based surrogate model construction methods and applications thereof
    • 基于神经网络的代理模型构建方法及应用
    • US08065244B2
    • 2011-11-22
    • US12048045
    • 2008-03-13
    • Dingding ChenAllan ZhongSyed HamidStanley Stephenson
    • Dingding ChenAllan ZhongSyed HamidStanley Stephenson
    • G06E1/00G06E3/00G06F15/18G06G7/00G06N3/02
    • G06N3/0454B33Y80/00
    • Various neural-network based surrogate model construction methods are disclosed herein, along with various applications of such models. Designed for use when only a sparse amount of data is available (a “sparse data condition”), some embodiments of the disclosed systems and methods: create a pool of neural networks trained on a first portion of a sparse data set; generate for each of various multi-objective functions a set of neural network ensembles that minimize the multi-objective function; select a local ensemble from each set of ensembles based on data not included in said first portion of said sparse data set; and combine a subset of the local ensembles to form a global ensemble. This approach enables usage of larger candidate pools, multi-stage validation, and a comprehensive performance measure that provides more robust predictions in the voids of parameter space.
    • 本文公开了各种基于神经网络的替代模型构建方法,以及这些模型的各种应用。 设计为仅在少量数据可用时使用(“稀疏数据条件”),所公开的系统和方法的一些实施例:创建在稀疏数据集的第一部分上训练的神经网络池; 为各种多目标函数中的每一个生成一组最小化多目标函数的神经网络集合; 基于不包括在所述稀疏数据集的所述第一部分中的数据,从每组集合中选择本地集合; 并组合一个本地组合的子集以形成全局集合。 这种方法使得可以使用更大的候选池,多级验证以及综合性能测量,从而在参数空间的空白中提供更强大的预测。