会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Cockpit of an airplane and method of operating an airplane
    • US11718406B2
    • 2023-08-08
    • US17635868
    • 2020-09-24
    • ISRAEL AEROSPACE INDUSTRIES LTD.
    • David Shavit
    • B64D11/06B64D11/00
    • B64D11/0689B64D11/0601B64D11/0641B64D2011/0076
    • A cockpit for an airplane having, in a plan view, an aft direction, a central longitudinal axis parallel to the aft direction and a rear axis perpendicular to the central longitudinal axis. The cockpit as seen in the plan view comprises: a first seat having a first seating surface with a first seat rear edge passing through an intersection between the longitudinal and rear axes, the first seat being disposed within the cockpit and configured so as to allow a pilot sitting on the first seating surface to perform pre-determined primary pilot functions; and a second seat having a second seating surface with a second seat rear edge. The second seat has: an operational state, in which the second seat is disposed within the cockpit and configured so as to allow operational seating of a pilot on the second seating surface to perform pre-determined secondary pilot functions, the second seat rear edge being at an operational distance from the rear axis; and at least one non-operational state, in which the operational seating of the secondary pilot is disabled, the at least one non-operational state comprising a resting state in which the footprint of the second seat in plan view is longer in at least one dimension than the footprint of the second seat in the operational state, allowing a lying-down position of the secondary pilot.
    • 7. 发明公开
    • DEPLOYABLE WING SYSTEM FOR AIR VEHICLE
    • US20230211902A1
    • 2023-07-06
    • US18000960
    • 2021-06-24
    • ISRAEL AEROSPACE INDUSTRIES LTD.
    • Danny AbramovYoav Heichal
    • B64U30/12B64C3/56B64U70/70
    • B64U30/12B64C3/56B64U70/70
    • A wing system is provided for an air vehicle, the air vehicle having a fuselage including a fuselage longitudinal axis. The wing system includes a set of wings, configured for transitioning between a stowed configuration and a deployed configuration. The set of wings includes a first said wing having a first wing tip, a first wing longitudinal axis, and a first pivot axis; and a second said wing having a second wing tip, a second wing longitudinal axis, and a second pivot axis. The first pivot axis and the second pivot axis are non-coaxial. In the stowed configuration, the first wing and the second wing are in overlying relationship such that at least a majority of a pressure surface of one wing is facing a suction surface of the other wing, and the first wing tip is spaced from the second wing tip by a first lateral spacing. In the deployed configuration, the first wing is oriented with respect to the second wing such that the first wing tip is spaced from the second wing tip by a second lateral spacing greater than the first lateral spacing. The transitioning includes a pivoting operation, including: pivoting the first wing about the first pivot axis between the stowed configuration and the deployed configuration; and, pivoting the second wing about the second pivot axis between the stowed configuration and the deployed configuration.