会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Apparatus and method for controlling plasma size and position in
plasma-activated chemical vapor deposition processes
    • 用于控制等离子体激活的化学气相沉积工艺中的等离子体尺寸和位置的装置和方法
    • US5449412A
    • 1995-09-12
    • US60953
    • 1993-05-13
    • John M. Pinneo
    • John M. Pinneo
    • C23C16/26C23C16/50C23C16/511C23C16/52H01J37/32H05H1/46C23C16/30
    • H01J37/32256H01J37/32192H01J37/32266H01J37/3299
    • A block of dielectric material having a long axis and a short axis and having low losses at a selected microwave frequency and a dielectric constant selected to produce a desired degree of phase modulation is mounted on a rotatable shaft in an orientation perpendicular to the long and short axes and arranged inside a waveguide feeding a CVD reactor containing a plasma species. The block is spun by a rotational force applied to the shaft at an angular acceleration such that the two axes of the block successively intersect the axis of the waveguide within the decay period of the plasma species. The frequency of phase modulation can be varied by changing the angular acceleration of the shaft, and the amplitude of the phase modulation can be varied by changing the ratio of block length to thickness and/or by selecting a material with higher dielectric constant. The incident microwave power may be modulated as a function of angular position of the spin shaft. By moving the apparent plasma and modulating the applied microwave power, a customized temperature profile may be achieved over a desired substrate area.
    • 具有长轴和短轴并且在选定的微波频率下具有低损耗并且选择用于产生期望程度的相位调制的介电常数的介电材料块以垂直于长短的方向安装在可旋转轴上 并且布置在馈送包含等离子体物质的CVD反应器的波导内部。 通过以角加速度施加到轴的旋转力来旋转该块,使得块的两个轴在等离子体物种的衰减周期内连续地与波导的轴线相交。 可以通过改变轴的角加速度来改变相位调制的频率,并且可以通过改变块长度与厚度的比率和/或通过选择具有较高介电常数的材料来改变相位调制的幅度。 入射微波功率可以作为旋转轴的角位置的函数进行调制。 通过移动表观等离子体并调制施加的微波功率,可以在期望的衬底区域上实现定制的温度分布。
    • 4. 发明授权
    • High thermal conductivity diamond/non-diamond composite materials
    • 高导热性金刚石/非金刚石复合材料
    • US5270114A
    • 1993-12-14
    • US954671
    • 1992-09-30
    • John A. HerbJohn M. PinneoClayton F. Gardinier
    • John A. HerbJohn M. PinneoClayton F. Gardinier
    • C01B31/06C23C16/27B32B9/00
    • C23C16/274C01B31/065C23C16/27Y10T428/249955Y10T428/249956Y10T428/249967Y10T428/2991Y10T428/30
    • The present invention comprises an article formed from a plurality of diamond particles and non-diamond particles compatible with diamond deposition preformed into a desired shape. Each of the particles has first surface regions in contact with immediately adjacent other ones of the particles, and second surface regions spaced apart from the immediately adjacent other ones of said particles to define boundaries of inter-particle voids between the immediately adjacent ones of the particles. The voids are infiltrated with high thermal conductivity CVD diamond material continuously coating the second surface regions of the particles and comprising merged growth fronts from the second surface regions of individual immediately adjacent ones of the particles into the inter-particle voids. The high thermal conductivity CVD diamond material has an average crystallite size greater than about 15 microns, an intensity ratio of diamond- Raman-peak-to-photoluminescence background intensity greater than about 20, a maximum intensity of the diamond Raman peak in counts/sec divided by the intensity of photoluminescence at 1270 cm.sup.-1 greater than about 3, a Raman sp.sup.3 full width half maximum less than about 6 cm.sup.-1 and a diamond-to-graphite Raman ratio greater than about 25. The thermal conductivity of the CVD diamond materials is in excess of 17 Wcm.sup.-1 K.sup.-1.
    • 本发明包括由多个金刚石颗粒和与金刚石沉积相容的非金刚石颗粒形​​成的制品,其预成形为所需形状。 每个颗粒具有与直接相邻的其它颗粒接触的第一表面区域,以及与紧邻的另一个颗粒间隔开的第二表面区域,以限定紧邻的颗粒之间的颗粒间空隙的边界 。 空隙被高导热性CVD金刚石材料渗透,连续地涂覆颗粒的第二表面区域并且包括从单个紧邻的颗粒的第二表面区域到颗粒间空隙中的合并生长前沿。 高导热性CVD金刚石材料具有大于约15微米的平均微晶尺寸,金刚石 - 拉曼峰 - 光致发光背景强度的强度比大于约20,金刚石拉曼峰的最大强度以计数/秒计 除以大于约3的1270cm-1处的光致发光强度,小于约6cm -1的拉曼sp3全宽半最大值和大于约25的金刚石 - 石墨拉曼比。CVD的热导率 金刚石材料超过17 Wcm-1K-1。
    • 6. 发明授权
    • Method for growing an adherent diamond layer atop an interlayer bonded to a compound semiconductor substrate
    • 在粘合到化合物半导体衬底上的层间生长粘附金刚石层的方法
    • US07939367B1
    • 2011-05-10
    • US12338783
    • 2008-12-18
    • Firooz Nasser-FailiNiels Christopher Engdahl
    • Firooz Nasser-FailiNiels Christopher Engdahl
    • H01L21/00
    • H01L21/3146H01L21/02115H01L21/02274H01L21/02304
    • The invention is a method for growing a critical adherent diamond layer on a substrate by Chemical Vapor Deposition (CVD) and the article produced by the method. The substrate can be a compound semiconductor coated with an adhesion layer. The adhesion layer is preferably a dielectric, such as silicon nitride, silicon carbide, aluminum nitride or amorphous silicon, to name some primary examples. The typical thickness of the adhesion layer is one micrometer or less. The resulting stack of layers, (e.g. substrate layer, adhesion layer and diamond layer) is structurally free of plastic deformation and the diamond layer is well adherent to the dielectric adhesion layer such that it can be processed further, such as by increasing the thickness of the diamond layer to a desired level, or by subjecting it to additional thin film fabrication process steps. In addition to preventing plastic deformation of the layer stack, the process also reduces the formation of soot during the CVD process. The reduction of soot allows for better adhesion between the adhesion layer and diamond layer of the layer stack.
    • 本发明是通过化学气相沉积(CVD)和通过该方法制备的制品在衬底上生长关键粘附金刚石层的方法。 衬底可以是涂覆有粘合层的化合物半导体。 粘附层优选为诸如氮化硅,碳化硅,氮化铝或非晶硅的电介质,以列举一些主要实例。 粘合层的典型厚度为1微米或更小。 所得到的层叠层(例如,基底层,粘合层和金刚石层)在结构上没有塑性变形,并且金刚石层与电介质粘合层良好粘附,使得其可进一步加工,例如通过增加厚度 金刚石层到所需的水平,或者通过使其进一步的薄膜制造工艺步骤。 除了防止层叠体的塑性变形之外,该过程还减少了CVD工艺期间烟灰的形成。 烟灰的减少允许粘附层和层叠层的金刚石层之间的更好的粘附。
    • 9. 发明授权
    • High thermal-conductivity diamond-coated fiber articles
    • 高导热性金刚石涂层纤维制品
    • US5277975A
    • 1994-01-11
    • US954358
    • 1992-09-30
    • John A. HerbJohn M. PinneoClayton F. Gardinier
    • John A. HerbJohn M. PinneoClayton F. Gardinier
    • C01B31/06C23C16/04C23C16/27B32B9/00
    • C23C16/274C01B31/065C04B30/02C04B35/52C04B35/64C04B38/0038C23C16/045C23C16/27C04B2235/427C04B2235/667Y10T428/249955Y10T428/249956Y10T428/249957Y10T428/249967Y10T428/24997Y10T428/24999Y10T428/2938Y10T428/2991Y10T428/30
    • The present invention comprises an article formed for a plurality of diamond-coated fibers preformed into a desired shape. Each of the fibers has first surface regions in contact with immediately adjacent other ones of the fibers, and second surface regions spaced apart from the immediately adjacent other ones of said fibers to define boundaries of inter-fiber voids between the immediately adjacent ones of the fibers. The voids are infiltrated with high thermal conductivity CVD diamond material continuously coating the second surface regions of the fibers and comprising merged growth fronts from the second surface regions of individual immediately adjacent ones of the fibers into the inter-particle voids. The high thermal conductivity CVD diamond material has an average crystallite size greater than about 15 microns, an intensity ratio of diamond-Raman-peak-to-photoluminescence background intensity greater than about 20, a maximum intensity of the diamond Raman peak in counts/sec divided by the intensity of photoluminescence at 1270 cm.sup.-1 greater than about 3, a Raman sp.sup.3 full width half maximum less than about 6 cm.sup.-1 and a diamond-to-graphite Raman ratio greater than about 25. The thermal conductivity of the CVD diamond material is in excess of 17 Wcm.sup.-1 K.sup.-1.
    • 本发明包括形成用于预成形为所需形状的多个金刚石涂层纤维的制品。 每个纤维具有与直接相邻的另一个纤维接触的第一表面区域和与紧邻的另一个纤维间隔开的第二表面区域,以限定紧邻的纤维之间的纤维间空隙的边界 。 空隙通过高导热性CVD金刚石材料渗透,连续地涂覆纤维的第二表面区域,并且包括从单独紧邻的纤维的第二表面区域到颗粒间空隙的合并生长前沿。 高导热性CVD金刚石材料具有大于约15微米的平均微晶尺寸,金刚石 - 拉曼峰 - 光致发光背景强度的强度比大于约20,金刚石拉曼峰的最大强度(以计数/秒计) 除了大于约3的1270cm-1处的光致发光强度,小于约6cm -1的拉曼sp3全宽半最大值和大于约25的金刚石 - 石墨拉曼比。CVD的热导率 金刚石材料超过17 Wcm-1K-1。