会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 84. 发明授权
    • Turbine airfoil trailing edge with micro cooling channels
    • 涡轮机翼后缘带有微冷却通道
    • US06499949B2
    • 2002-12-31
    • US09818385
    • 2001-03-27
    • Robert Edward SchafrikRamgopal DaroliaChing-Pang Lee
    • Robert Edward SchafrikRamgopal DaroliaChing-Pang Lee
    • F01D518
    • F01D5/187F05D2230/14Y02T50/67Y02T50/673Y02T50/676Y10T29/4932
    • The present invention provides active convection cooling through micro channels within or adjacent to a bond coat layer applied to the trailing edge of a turbine engine high pressure airfoil. When placed adjacent to or within a porous TBC, the micro channels additionally provide transpiration cooling through the porous TBC. The micro channels communicate directly with at least one cooling circuit contained within the airfoil from which they receive cooling air, thereby providing direct and efficient cooling for the bond coat layer. Because the substrate includes an actively cooled flow path surface region that can reduce the cooling requirement for the substrate, the engine can run at a higher firing temperature without the need for additional cooling air, achieving a better, more efficient engine performance. In one embodiment, a metallic bond coat is added to an airfoil with pressure side bleed film cooling slots. The bond coat is grooved such that the grooves are structured, with at least one structured micro groove communicating with at least one cooling fluid supply contained within the airfoil. A TBC layer is applied, using a shadowing technique, over the structured grooves, resulting in the formation of hollow micro channels for the transport of the cooling fluid. In different embodiments, the location of the structured grooves, hence, the resulting micro channels are placed within the airfoil substrate at the substrate/bond coat interface or within the TBC layer.
    • 本发明提供了在施加到涡轮发动机高压翼型件的后缘上的粘合涂层之内或附近的微通道的主动对流冷却。 当放置在多孔TBC附近或内部时,微通道另外通过多孔TBC提供蒸腾冷却。 微通道与包含在翼片内的至少一个冷却回路直接连通,从而从它们接收冷却空气,从而为粘结涂层提供直接和有效的冷却。 因为基板包括可以降低基板的冷却要求的主动冷却的流动路径表面区域,所以发动机可以在更高的点火温度下运行,而不需要额外的冷却空气,实现更好,更有效的发动机性能。 在一个实施例中,将金属粘合涂层加入到具有压力侧泄放膜冷却槽的翼型件上。 接合涂层是开槽的,使得凹槽被构造成具有与包含在翼型内的至少一个冷却流体供应源连通的至少一个结构化微槽。 使用阴影技术在结构化凹槽上施加TBC层,导致形成用于输送冷却流体的中空微通道。 在不同的实施例中,结构化凹槽的位置,因此,所得到的微通道在衬底/粘结涂层界面处或在TBC层内被放置在翼型衬底内。
    • 85. 发明授权
    • Turbine blade tip having thermal barrier coating-formed micro cooling channels
    • 涡轮叶片尖端具有形成热障涂层的微冷却通道
    • US06461107B1
    • 2002-10-08
    • US09818312
    • 2001-03-27
    • Ching-Pang LeeRamgopal DaroliaRobert Edward Schafrik
    • Ching-Pang LeeRamgopal DaroliaRobert Edward Schafrik
    • F01D518
    • F01D5/288F01D5/183F01D5/187F01D5/20Y02T50/67Y02T50/673Y02T50/676Y10T29/49318
    • The present invention provides for cooling the squealer tip region of a high pressure turbine blade used in a gas turbine engine comprising coating the squealer tip with a metallic bond coat. Micro grooves oriented in the radial direction are fabricated into the airfoil on the interior surface of the squealer tip above and substantially perpendicular to the tip cap. A micro groove oriented in the axial direction is fabricated along the joint corner between the squealer tip side wall and the, tip cap to connect and act as a plenum with all of the micro grooves oriented in the radial direction. Tip cap cooling holes are drilled through the tip cap and connected to the micro groove that ultimately forms a plenum. TBC ceramic is then deposited on both blade external surfaces and the tip cavity, forming micro channels from micro grooves as a result of self shadowing. In this manner, cooling fluid passes from a cooling fluid source through the tip cap holes and into the plenum created by the micro channel, subsequently passing into the micro channels that are oriented in the radial direction. Cooling fluid is thereby directed through the micro channels to cool the squealer, exiting in the vicinity of the tip. Since the TBC is porous, some of the cooling fluid will also flow through the TBC to provide transpiration cooling. The present invention further comprises both the cooled blade and squealer tip region formed by the foregoing methods and the blade and squealer tip with the micro channels for cooling the squealer tip.
    • 本发明提供了用于冷却在燃气涡轮发动机中使用的高压涡轮机叶片的鸣响器尖端区域,其包括用金属粘结涂层涂覆尖叫尖端。 在径向方向上定向的微槽在尖端顶部的内表面上被制造成位于尖端顶部的内表面上且基本上垂直于顶盖。 沿着轴向定向的微槽沿着尖叫尖端侧壁和尖端盖之间的接合角制造,以连接并充当具有沿径向方向定向的所有微槽的集气室。 顶盖冷却孔穿过尖端盖并连接到最终形成增压室的微槽。 然后将TBC陶瓷沉积在两个叶片外表面和尖端腔上,由于自身阴影而从微槽形成微通道。 以这种方式,冷却流体从冷却流体源通过顶盖孔并进入由微通道产生的增压室,随后进入沿径向定向的微通道。 因此,冷却流体被引导通过微通道,以冷却在尖端附近离开的鸣叫器。 由于TBC是多孔的,一些冷却流体也将流经TBC以提供蒸发冷却。 本发明还包括通过上述方法形成的冷却刀片和鸣响器尖端区域以及具有用于冷却鸣叫器尖端的微通道的刀片和尖叫尖端。
    • 86. 发明授权
    • Electrochemical machining process, electrode therefor and turbine bucket with turbulated cooling passage
    • 电化学加工工艺,其电极和涡轮机桶与紊流冷却通道
    • US06416283B1
    • 2002-07-09
    • US09688579
    • 2000-10-16
    • Robert A. JohnsonChing-Pang LeeBin WeiHsin-Pang Wang
    • Robert A. JohnsonChing-Pang LeeBin WeiHsin-Pang Wang
    • F01D508
    • B23H1/04B23H9/10B23H9/14F05B2260/222
    • An electrode having a dielectric coating is patterned to provide axially spaced rows of insulating material on the external surface of the electrode with one or more gaps in the insulating material of each row. The electrode is placed in a preformed hole of a turbine bucket and an electrolyte is provided for flow between the electrode and the walls of the hole. Upon application of an electrical current, portions of the material of the interior wall surface directly opposite the non-insulated portions of the electrode are dissolved, forming grooves. The insulated portions of the electrode leave axially spaced rows of projections extending toward the axis of the hole. The gaps in the rows or projections are axially misaligned. The projections form turbulators in the cooling flow passages of the bucket, enhancing the heat transfer coefficient.
    • 具有电介质涂层的电极被图案化以在电极的外表面上提供轴向隔开的一排绝缘材料,其中每行的绝缘材料中具有一个或多个间隙。 将电极放置在涡轮机桶的预制孔中,并且提供电解质以在电极和孔的壁之间流动。 在施加电流时,直接与电极的非绝缘部分相对的内壁表面的材料部分被溶解,形成凹槽。 电极的绝缘部分沿着孔的轴线离开轴向间隔开的一列突起。 行或突起中的间隙轴向不对准。 这些突起在铲斗的冷却流动通道中形成涡轮,提高了传热系数。
    • 87. 发明授权
    • Method for repairing a thermal barrier coating and repaired coating formed thereby
    • 用于修复由此形成的热障涂层和修补的涂层的方法
    • US06413578B1
    • 2002-07-02
    • US09687721
    • 2000-10-12
    • William R. StowellRobert A. JohnsonAndrew J. SkoogJoseph Thomas BegovichThomas Walter RentzJane Ann MurphyChing-Pang LeeDainel P. Ivkovich, Jr.
    • William R. StowellRobert A. JohnsonAndrew J. SkoogJoseph Thomas BegovichThomas Walter RentzJane Ann MurphyChing-Pang LeeDainel P. Ivkovich, Jr.
    • B05D106
    • C23C24/08Y02T50/67Y10T428/20Y10T428/24479Y10T428/24521Y10T428/25Y10T428/252
    • A method of repairing a thermal barrier coating on a component designed for use in a hostile thermal environment, such as turbine, combustor and augmentor components of a gas turbine engine. The method more particularly involves repairing a thermal barrier coating on a component that has suffered localized spallation of the thermal barrier coating. After cleaning the surface area of the component exposed by the localized spallation, a ceramic paste comprising a ceramic powder in a binder is applied to the surface area of the component. The binder is then reacted to yield a ceramic-containing repair coating that covers the surface area of the component and comprises the ceramic powder in a matrix of a material formed when the binder was reacted. The binder is preferably a ceramic precursor material that can be converted immediately to a ceramic or allowed to thermally decompose over time to form a ceramic, such that the repair coating has a ceramic matrix. The repair method can be performed while the component remains installed, e.g., in a gas turbine engine. Immediately after the reaction step, the gas turbine engine can resume operation during which the binder is further reacted/converted and the strength of the repair coating increases.
    • 在设计用于恶劣热环境中的部件(例如燃气涡轮发动机的涡轮机,燃烧器和增压器部件)上修复热障涂层的方法。 该方法更具体地涉及在已经遭受热障涂层的局部剥落的部件上修复热障涂层。 在清洁通过局部剥离暴露的部件的表面积之后,将包含粘合剂中的陶瓷粉末的陶瓷膏施加到部件的表面区域。 然后使粘合剂反应以产生覆盖部件的表面积的含陶瓷的修补涂层,并且包含当粘合剂反应时形成的材料的基质中的陶瓷粉末。 粘合剂优选是陶瓷前体材料,其可以立即转化成陶瓷或随时间而热分解形成陶瓷,使得修补涂层具有陶瓷基体。 当部件保持安装时,例如在燃气涡轮发动机中,可以执行修理方法。 在反应步骤之后,燃气涡轮发动机可以立即恢复操作,在此期间粘合剂进一步反应/转化,并且修复涂层的强度增加。
    • 90. 发明授权
    • AFT flowing multi-tier airfoil cooling circuit
    • AFT流动多层翼型冷却回路
    • US06220817B1
    • 2001-04-24
    • US08971305
    • 1997-11-17
    • George A. DurginChing-Pang Lee
    • George A. DurginChing-Pang Lee
    • F01D508
    • F01D5/187F05D2260/201F05D2260/202Y02T50/673Y02T50/676
    • A turbine airfoil includes a plurality of internal ribs defining at least two independent serpentine cooling circuits having outer and inner serpentine portions, respectively, in different longitudinal tiers with the outer serpentine position being disposed longitudinally above the inner tier serpentine position for differentially longitudinally cooling the airfoil. The outer and inner serpentine portions include outer and inner exits and entrances wherein the outer and inner exits are positioned aft of the outer and inner entrances, respectively, so as to have a chordal flow direction aftwards from the leading edge to the trailing edge within the serpentine portions.
    • 涡轮机翼片包括多个内部肋条,其限定至少两个独立的蛇形冷却回路,分别在不同的纵向层中具有外部和内部蛇形部分,其中外部蛇形位置纵向设置在内部蛇形位置上方,用于差异地纵向冷却翼型件 。 外部和内部蛇形部分包括外部和外部出口和入口,其中外部出口和内部出口分别位于外部入口和内部入口的后方,以便在内部出口和内部出口之间具有从前缘到后缘的弦向流动方向 蛇纹石部分。