会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 86. 发明申请
    • LOW RESISTANCE SOURCE AND DRAIN EXTENSIONS FOR ETSOI
    • ETSOI的低电阻源和漏电延伸
    • US20130015509A1
    • 2013-01-17
    • US13183666
    • 2011-07-15
    • Balasubramanian S. HaranHemanth JagannathanSivananda K. KanakasabapathySanjay Mehta
    • Balasubramanian S. HaranHemanth JagannathanSivananda K. KanakasabapathySanjay Mehta
    • H01L29/772H01L21/336
    • H01L29/66772H01L29/6653H01L29/78621
    • A gate dielectric is patterned after formation of a first gate spacer by anisotropic etch of a conformal dielectric layer to minimize overetching into a semiconductor layer. In one embodiment, selective epitaxy is performed to sequentially form raised epitaxial semiconductor portions, a disposable gate spacer, and raised source and drain regions. The disposable gate spacer is removed and ion implantation is performed into exposed portions of the raised epitaxial semiconductor portions to form source and drain extension regions. In another embodiment, ion implantation for source and drain extension formation is performed through the conformal dielectric layer prior to an anisotropic etch that forms the first gate spacer. The presence of the raised epitaxial semiconductor portions or the conformation dielectric layer prevents complete amorphization of the semiconductor material in the source and drain extension regions, thereby enabling regrowth of crystalline source and drain extension regions.
    • 在通过各向异性蚀刻共形介电层形成第一栅极间隔物之后对栅极电介质进行构图,以最小化过蚀刻到半导体层中。 在一个实施例中,执行选择性外延以顺序地形成凸起的外延半导体部分,一次性栅极间隔物和升高的源极和漏极区域。 去除一次性栅极间隔物,并将离子注入进行到隆起的外延半导体部分的暴露部分中以形成源极和漏极延伸区域。 在另一个实施例中,用于源极和漏极延伸形成的离子注入在形成第一栅极间隔物的各向异性蚀刻之前通过保形介电层进行。 升高的外延半导体部分或构象介电层的存在防止了源极和漏极延伸区域中的半导体材料的完全非晶化,从而使结晶源极和漏极延伸区域再生长。
    • 87. 发明授权
    • Borderless contact for replacement gate employing selective deposition
    • 采用选择性沉积的替代栅极的无边界接触
    • US08232607B2
    • 2012-07-31
    • US12952372
    • 2010-11-23
    • Lisa F. EdgeBalasubramanian S. Haran
    • Lisa F. EdgeBalasubramanian S. Haran
    • H01L21/02
    • H01L21/823842H01L21/823807H01L21/823871H01L29/165H01L29/4966H01L29/517H01L29/518H01L29/665H01L29/66545H01L29/6659H01L29/66636H01L29/7833H01L29/7843H01L29/7848
    • A self-aligned gate cap dielectric can be employed to form a self-aligned contact to a diffusion region, while preventing electrical short with a gate conductor due to overlay variations. In one embodiment, an electroplatable or electrolessly platable metal is selectively deposited on conductive materials in a gate electrode, while the metal is not deposited on dielectric surfaces. The metal portion on top of the gate electrode is converted into a gate cap dielectric including the metal and oxygen. In another embodiment, a self-assembling monolayer is formed on dielectric surfaces, while exposing metallic top surfaces of a gate electrode. A gate cap dielectric including a dielectric oxide is formed on areas not covered by the self-assembling monolayer. The gate cap dielectric functions as an etch-stop structure during formation of a via hole, so that electrical shorting between a contact via structure formed therein and the gate electrode is avoided.
    • 可以使用自对准栅极帽电介质来形成与扩散区域的自对准接触,同时防止由于覆盖变化导致的栅极导体的电短路。 在一个实施例中,可电镀或无电镀的金属被选择性地沉积在栅电极中的导电材料上,同时金属不沉积在电介质表面上。 栅极顶部的金属部分被转换成包括金属和氧的栅极电介质。 在另一个实施例中,在电介质表面上形成自组装单层,同时暴露栅电极的金属顶表面。 在未被自组装单层覆盖的区域上形成包括电介质氧化物的栅极电介质。 栅极电介质在形成通孔期间用作蚀刻停止结构,从而避免了在其中形成的接触通孔结构与栅电极之间的电短路。
    • 89. 发明申请
    • DEVICE WITH STRESSED CHANNEL
    • 具有应力通道的设备
    • US20110031503A1
    • 2011-02-10
    • US12538627
    • 2009-08-10
    • Bruce B. DorisJohnathan E. FaltermeierLahir S. AdamBalasubramanian S. Haran
    • Bruce B. DorisJohnathan E. FaltermeierLahir S. AdamBalasubramanian S. Haran
    • H01L29/161H01L27/092H01L21/04H01L21/8238
    • H01L21/823807H01L21/823814H01L29/66628H01L29/66636H01L29/7848
    • An FET device is disclosed which contains a source and a drain that are each provided with an extension. The source and the drain, and their extensions, are composed of epitaxial materials containing Ge or C. The epitaxial materials and the Si substrate have differing lattice constants, consequently the source and the drain and their extensions are imparting a state of stress onto the channel. For a PFET device the epitaxial material may be SiGe, or Ge, and the channel may be in a compressive state of stress. For an NFET device the epitaxial material may be SiC and the channel may be in a tensile state of stress. A method for fabricating an FET device is also disclosed. One may form a first recession in the Si substrate to a first depth on opposing sides of the gate. The first recession is filled epitaxially with a first epitaxial material. Then, a second recession may be formed in the Si substrate to a second depth, which is greater than the first depth. Next, one may fill the second recession with a second epitaxial material, which is the same kind of material as the first epitaxial material. The epitaxial materials are selected to have a different lattice constant than the Si substrate, and consequently a state of stress is being imparted onto the channel.
    • 公开了一种FET器件,其包含各自具有延伸部的源极和漏极。 源极和漏极及其延伸部分由包含Ge或C的外延材料组成。外延材料和Si衬底具有不同的晶格常数,因此源极和漏极及其延伸部分在沟道上赋予应力状态 。 对于PFET器件,外延材料可以是SiGe或Ge,并且沟道可以处于压应力的压缩状态。 对于NFET器件,外延材料可以是SiC,并且沟道可以处于应力的拉伸状态。 还公开了一种用于制造FET器件的方法。 可以在Si衬底中形成第一凹陷到栅极的相对侧上的第一深度。 用第一外延材料外延地填充第一次衰退。 然后,可以在Si衬底中形成比第一深度更大的第二深度的第二凹陷。 接下来,可以用与第一外延材料相同的材料的第二外延材料填充第二凹陷。 选择外延材料具有与Si衬底不同的晶格常数,并且因此在沟道上施加应力状态。