会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 81. 发明授权
    • Low memory decision tree
    • 低内存决策树
    • US07574411B2
    • 2009-08-11
    • US10835597
    • 2004-04-29
    • Janne SuontaustaJilei Tian
    • Janne SuontaustaJilei Tian
    • G06N3/04G06N3/08G10L15/28
    • G10L15/187G06F17/30625G10L13/08
    • Management of a low memory treelike data structure is shown. The method according to the invention comprises steps for creating a decision tree including a parent node and at least one leaf node, and steps for searching data from said nodes. The nodes of the decision tree are stored sequentially in such a manner that nodes follow the parent node in storage order, wherein the nodes refining the context of the searchable data can be reached without a link from their parent node. The method can preferably be utilized in speech-recognition systems, in text-to-phoneme mapping.
    • 显示了低内存数据结构的管理。 根据本发明的方法包括用于创建包括父节点和至少一个叶节点的决策树的步骤,以及用于从所述节点搜索数据的步骤。 决策树的节点按照节点按照存储顺序跟随父节点的方式被顺序地存储,其中可以达到改善可搜索数据的上下文的节点,而不需要与其父节点的链接。 在文本到音素映射中,该方法可以优选地用于语音识别系统中。
    • 83. 发明申请
    • APPARATUS, METHOD AND COMPUTER PROGRAM PRODUCT FOR ADVANCED VOICE CONVERSION
    • 用于高级语音转换的装置,方法和计算机程序产品
    • US20080082320A1
    • 2008-04-03
    • US11537428
    • 2006-09-29
    • Victor PopaJani K. NurminenJilei Tian
    • Victor PopaJani K. NurminenJilei Tian
    • G10L19/00
    • G10L13/033G10L2021/0135
    • An apparatus is provided that includes a converter for training a voice conversion model for converting source encoding parameters characterizing a source speech signal associated with a source voice into corresponding target encoding parameters characterizing a target speech signal associated with a target voice. To reduce the affect of noise on the voice conversion model, the converter may be configured for receiving sequences of source and target encoding parameters, and train the model without one or more frames of the source and target speech signals that have energies less than a threshold energy. After conversion of the respective parameters, then, the converter, a decoder or another component may be configured for reducing the energy of one or more frames of the target speech signal that have an energy less than the threshold energy, where the threshold value may be adaptable based upon models of speech frames and non-speech frames.
    • 提供一种装置,其包括用于训练用于将表征与源语音相关联的源语音信号的源编码参数转换成表征与目标语音相关联的目标语音信号的相应目标编码参数的语音转换模型的转换器。 为了减少噪声对语音转换模型的影响,转换器可以被配置为用于接收源和目标编码参数的序列,并训练没有源和目标语音信号的能量小于阈值的一个或多个帧的模型 能源。 在转换各个参数之后,转换器,解码器或另一个组件可以被配置为用于减少具有小于阈值能量的能量的目标语音信号的一个或多个帧的能量,其中阈值可以是 基于语音帧和非语音帧的模型来适应。
    • 84. 发明授权
    • Method for compressing dictionary data
    • 压缩字典数据的方法
    • US07181388B2
    • 2007-02-20
    • US10292122
    • 2002-11-11
    • Jilei Tian
    • Jilei Tian
    • G06F17/21
    • G10L15/12G10L2015/025H03M7/30
    • The invention relates to pre-processing of a pronunciation dictionary for compression in a data processing device, the pronunciation dictionary comprising at least one entry, the entry comprising a sequence of character units and a sequence of phoneme units. According to one aspect of the invention the sequence of character units and the sequence of phoneme units are aligned using a statistical algorithm. The aligned sequence of character units and aligned sequence of phoneme units are interleaved by inserting each phoneme unit at a predetermined location relative to the corresponding character unit.
    • 本发明涉及一种用于在数据处理设备中进行压缩的发音字典的预处理,该发音字典包括至少一个条目,该条目包括一系列字符单元和一系列音素单元。 根据本发明的一个方面,使用统计算法来对齐字符单元的序列和音素单元的序列。 通过将每个音素单元相对于相应的字符单元插入预定位置来交织字符单元的排列顺序和对准的音素单元的顺序。
    • 85. 发明申请
    • System and method for measuring confusion among words in an adaptive speech recognition system
    • 用于测量自适应语音识别系统中单词之间混淆的系统和方法
    • US20060064177A1
    • 2006-03-23
    • US11148469
    • 2005-06-09
    • Jilei TianSunil SivadasTommi Lahti
    • Jilei TianSunil SivadasTommi Lahti
    • G05B15/00
    • G10L15/197G10L15/183
    • A system and method are proposed for measuring confusability or similarity between given entry pairs, including text string pairs and acoustic model pairs, in systems such as speech recognition and synthesis systems. A string edit distance (Levenshiten distance) can be applied to measure distance between any pair of text strings. It also can be used to calculate a confusion measurement between acoustic model pairs of different words and a model-driven method can be used to calculate a HMM model confusion matrix. This model-based approach can be efficiently calculated with low memory and low computational resources. Thus it can improve the speech recognition performance and models trained from text corpus.
    • 提出了一种用于在诸如语音识别和合成系统的系统中测量给定输入对之间的混淆性或相似性的系统和方法,包括文本串对和声学模型对。 可以应用字符串编辑距离(Levenshiten distance)来测量任何文本字符串之间的距离。 它也可以用于计算不同词语的声学模型对之间的混淆测量,并且可以使用模型驱动的方法来计算HMM模型混淆矩阵。 这种基于模型的方法可以用低内存和低计算资源有效地计算。 因此,它可以提高从文本语料库训练的语音识别性能和模型。