会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 74. 发明申请
    • HIGH-PERFORMANCE ONE-TRANSISTOR MEMORY CELL
    • 高性能单晶体管存储单元
    • US20120139004A1
    • 2012-06-07
    • US13368535
    • 2012-02-08
    • Arup Bhattacharyya
    • Arup Bhattacharyya
    • H01L29/78
    • H01L27/108G11C11/40G11C11/404H01L21/84H01L27/1021H01L27/10802H01L27/1203H01L29/7841
    • One aspect of this disclosure relates to a memory cell. In various embodiments, the memory cell includes an access transistor having a floating node, and a diode connected between the floating node and a diode reference potential line. The diode includes an anode, a cathode, and an intrinsic region between the anode and the cathode. A charge representative of a memory state of the memory cell is held across the intrinsic region of the diode. In various embodiments, the memory cell is implemented in bulk semiconductor technology. In various embodiments, the memory cell is implemented in semiconductor-on-insulator technology. In various embodiments, the diode is gate-controlled. In various embodiments, the diode is charge enhanced by an intentionally generated charge in a floating body of an SOI access transistor. Various embodiments include laterally-oriented diodes (stacked and planar configurations), and various embodiments include vertically-oriented diodes. Other aspects and embodiments are provided herein.
    • 本公开的一个方面涉及存储器单元。 在各种实施例中,存储单元包括具有浮动节点的存取晶体管和连接在浮动节点和二极管参考电位线之间的二极管。 二极管包括阳极,阴极和阳极和阴极之间的本征区域。 表示存储单元的存储状态的电荷被保持在二极管的本征区域的两侧。 在各种实施例中,存储器单元以体半导体技术实现。 在各种实施例中,存储器单元以绝缘体上半导体技术实现。 在各种实施例中,二极管是栅极控制的。 在各种实施例中,通过在SOI存取晶体管的浮体中有意产生的电荷对二极管进行充电。 各种实施例包括横向取向的二极管(堆叠和平面配置),并且各种实施例包括垂直取向的二极管。 本文提供了其它方面和实施例。
    • 75. 发明授权
    • Methods of forming and operating back-side trap non-volatile memory cells
    • 形成和操作背面陷阱非易失性存储单元的方法
    • US08058118B2
    • 2011-11-15
    • US12956570
    • 2010-11-30
    • Arup Bhattacharyya
    • Arup Bhattacharyya
    • H01L29/74
    • H01L29/792B82Y10/00G11C16/0416G11C16/0483H01L21/28273H01L21/84H01L27/11521H01L29/4232H01L29/42324H01L29/66825H01L29/7881
    • Methods of forming and operating a back-side trap non-volatile memory cell. Method of forming a back-side trap non-volatile memory cell include forming a trapping material, forming two or more sub-layers of dielectric material on the trapping material, wherein a conduction band offset of each sub-layer of dielectric material is less than the conduction band offset of the material upon which it is formed, and forming a channel region on the two or more sub-layers of dielectric material. Methods of operating a back-side trap non-volatile memory cell include programming the memory cell via direct tunneling of carriers through an asymmetric band-gap tunnel insulator layer having two or more sub-layers formed beneath a channel region and having layers of material of increasing conduction band offset, and trapping the carriers in a trapping layer formed under the tunnel insulator layer.
    • 形成和操作背面陷阱非易失性存储单元的方法。 形成背面陷阱非易失性存储单元的方法包括形成捕获材料,在捕获材料上形成介电材料的两个或多个子层,其中介电材料的每个子层的导带偏移小于 其形成的材料的导带偏移,并且在介电材料的两个或更多个子层上形成沟道区。 操作背面陷阱非易失性存储器单元的方法包括通过载流子的直接隧道通过具有形成在沟道区下面的具有两个或多个子层的非对称带隙隧道绝缘体层来编程存储单元,并且具有 增加导带偏移,并将载流子俘获在形成在隧道绝缘体层之下的俘获层中。
    • 78. 发明授权
    • Band engineered nano-crystal non-volatile memory device utilizing enhanced gate injection
    • 利用增强栅极注入的带状工程纳米晶体非易失性存储器件
    • US07851850B2
    • 2010-12-14
    • US12623895
    • 2009-11-23
    • Arup Bhattacharyya
    • Arup Bhattacharyya
    • H01L29/792
    • H01L29/42332B82Y10/00G11C16/0416G11C16/0483G11C2216/06H01L29/513H01L29/7883
    • Non-volatile memory devices and arrays are described that utilize reverse mode non-volatile memory cells that have band engineered gate-stacks and nano-crystal charge trapping in EEPROM and block erasable memory devices, such as Flash memory devices. Embodiments of the present invention allow a reverse mode gate-insulator stack memory cell that utilizes the control gate for programming and erasure through a band engineered crested tunnel barrier. Charge retention is enhanced by utilization of high work function nano-crystals in a non-conductive trapping layer and a high K dielectric charge blocking layer. The band-gap engineered gate-stack with symmetric or asymmetric crested barrier tunnel layers of the non-volatile memory cells of embodiments of the present invention allow for low voltage tunneling programming and erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention.
    • 描述了使用具有带工程化栅极堆叠的反向模式非易失性存储器单元和在EEPROM和块可擦除存储器件(例如闪存器件)中的纳米晶体电荷俘获的非易失性存储器件和阵列。 本发明的实施例允许使用控制门的反向模式栅极 - 绝缘体堆叠存储器单元来编程和擦除通过波段设计的波峰隧道势垒。 通过在非导电捕获层和高K介电电荷阻挡层中利用高功函数纳米晶体来提高电荷保持率。 具有本发明实施例的非易失性存储单元的具有对称或非对称顶点势垒隧道层的带隙工程的栅极叠层允许用电子和空穴进行低电压隧道编程和擦除,同时保持高电荷阻挡屏障和深度 载体捕获位点,保持良好的电荷。
    • 80. 发明申请
    • Nanocrystal Based Universal Memory Cells, and Memory Cells
    • 基于纳米晶体的通用存储单元和存储单元
    • US20100295118A1
    • 2010-11-25
    • US12815109
    • 2010-06-14
    • Arup Bhattacharyya
    • Arup Bhattacharyya
    • H01L29/792
    • B82Y30/00B82Y10/00H01L21/28273H01L21/28282H01L27/10873H01L29/42332H01L29/42348H01L29/513H01L29/7881H01L29/792Y10S977/777Y10S977/943
    • Some embodiments include memory cells that contain a dynamic random access memory (DRAM) element and a nonvolatile memory (NVM) element. The DRAM element contains two types of DRAM nanoparticles that differ in work function. The NVM contains two types of NVM nanoparticles that differ in trapping depth. The NVM nanoparticles may be in vertically displaced charge-trapping planes. The memory cell contains a tunnel dielectric, and one of the charge-trapping planes of the NVM may be further from the tunnel dielectric than the other. The NVM charge-trapping plane that is further from the tunnel dielectric may contain larger NVM nanoparticles than the other NVM charge-trapping plane. The DRAM element may contain a single charge-trapping plane that has both types of DRAM nanoparticles therein. The memory cells may be incorporated into electronic systems.
    • 一些实施例包括包含动态随机存取存储器(DRAM)元件和非易失性存储器(NVM)元件的存储器单元。 DRAM元件包含功能不同的两种类型的DRAM纳米粒子。 NVM包含捕获深度不同的两种类型的NVM纳米颗粒。 NVM纳米颗粒可以在垂直移位的电荷捕获平面中。 存储单元包含隧道电介质,并且NVM的电荷俘获平面之一可以比隧道电介质更远。 距离隧道电介质更远的NVM电荷捕获平面可能包含比其他NVM电荷捕获平面更大的NVM纳米颗粒。 DRAM元件可以包含在其中具有两种类型的DRAM纳米颗粒的单个电荷捕获平面。 存储器单元可以并入到电子系统中。