会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 62. 发明申请
    • Light scattering optical resonator
    • 光散射光谐振器
    • US20070127861A1
    • 2007-06-07
    • US11699705
    • 2007-01-29
    • Vilson de AlmeidaCarlos BarriosRoberto PanepucciMichal Lipson
    • Vilson de AlmeidaCarlos BarriosRoberto PanepucciMichal Lipson
    • G02F1/01
    • G02F1/313G02B6/12007G02F2203/15
    • Ring or disc optical resonators are provided with random or coherent corrugation on a top surface to cause optical power to be radiated in a desired direction by light scattering. The resonators may be positioned proximate a waveguide, either in-plane or inter-plane with the waveguide. The resonators are used in a polymeric photonic display. Light at each fundamental color is generated by light emitting diodes, such as organic light emitting diodes (OLEDs). The light is coupled into waveguides that cross an array of diffractive elements, such as the resonators, each combined with an optical modulator, such as a polymer electro-optic (EO) modulator. The modulator allows light from the waveguides to reach the diffractive elements. Control lines run across the waveguides, and provide control signals to the modulators, allowing one row of diffractive elements at a time to receive light from the waveguides. The rows are scanned and synchronized with light generated by the OLEDs.
    • 环形或光盘式光学谐振器在顶表面上提供随机或相干波纹,以通过光散射使光功率在期望的方向上辐射。 谐振器可以定位在波导附近,波导与波导在平面内或平面内。 谐振器用于聚合物光子显示屏。 每个基色的光由诸如有机发光二极管(OLED)的发光二极管产生。 光耦合到穿过诸如谐振器的衍射元件阵列的波导,每个谐振器与诸如聚合物电光(EO)调制器的光学调制器组合。 调制器允许来自波导的光到达衍射元件。 控制线穿过波导管,并向调制器提供控制信号,允许一行衍射元件一次接收来自波导的光。 行被扫描并与OLED产生的光同步。
    • 65. 发明授权
    • Imaging device and method
    • 成像装置和方法
    • US09581796B2
    • 2017-02-28
    • US13497578
    • 2010-09-03
    • Ulf LeonhardtTomas TycLucas Heitzmann GabrielliMichal Lipson
    • Ulf LeonhardtTomas TycLucas Heitzmann GabrielliMichal Lipson
    • G02B17/08G02B3/00G02B27/58G02B1/00
    • G02B17/086G02B1/002G02B3/0087G02B27/58
    • The resolution of conventional imaging devices is restricted by the diffraction limit. ‘Perfect’ imaging devices which can achieve a resolution beyond the diffraction limit have been considered impossible to implement. However, the present disclosure provides an imaging device which can achieve improved resolution beyond the diffraction limit and which can be implemented in practice. Said imaging device comprises: a. a lens having a refractive index that varies according to a predetermined refractive index profile; b. a source; c. an outlet for decoupling waves from the device; and d. a reflector provided around the lens, the source and the outlet, wherein the reflector and the refractive index profile of the lens are together arranged to direct waves transmitted in any of a plurality of directions from the source to the outlet.
    • 常规成像装置的分辨率受到衍射极限的限制。 可以实现超出衍射极限的分辨率的“完美”成像装置被认为是不可能实现的。 然而,本公开提供了一种成像装置,其可以实现超出衍射极限的改进的分辨率,并且可以在实践中实现。 所述成像装置包括:a。 具有根据预定折射率分布变化的折射率的透镜; b。 来源; C。 用于将波从设备中去耦的出口; 和d。 设置在透镜周围的反射器,源和出口,其中反射器和透镜的折射率分布在一起布置成将从多个方向中的任一个方向传输的波导向出射口。
    • 66. 发明授权
    • Integrated optofluidic system using microspheres
    • 使用微球的集成光流体系统
    • US09551650B2
    • 2017-01-24
    • US13375433
    • 2010-05-28
    • Arthur NitkowskiMichal Lipson
    • Arthur NitkowskiMichal Lipson
    • G01N21/77B01L3/00G01N21/05G01N21/53G01N21/03
    • G01N21/05B01L3/502715B01L2400/0454G01N21/53G01N21/7703G01N21/7746G01N2021/0346G01N2021/058G01N2021/7789
    • An integrated optofluidic system for trapping and transporting particles for analysis is provided comprising a planar substrate; a microfluidic channel; and a waveguide integrated with the channel. A microsphere particle in the integrated optofluidic system can act as a cavity, allowing light to circulate many thousands of times around the circumference of the microsphere. Optical trapping and transport is used for nanoscale positioning to excite the microsphere resonances. Sensitive measurements on molecules can be accomplished by monitoring changes in whispering gallery modes (WGMs) that propagate around the circumference of the microsphere. By using a broadband or supercontinuum light source, a microsphere can be trapped and many WGM resonances can be excited through the visible and near-infrared wavelengths simultaneously. After the resonances are measured using the waveguide transmission, the microsphere can be freed by decreasing the optical power and the process repeated with a different microsphere.
    • 提供了用于捕获和传送用于分析的颗粒的集成光流体系统,其包括平面基板; 微流通道; 以及与通道集成的波导。 集成光流体系统中的微球颗粒可以作为空腔,使得光可以围绕微球的圆周循环数千次。 光学捕获和传输用于纳米级定位以激发微球谐振。 可以通过监测围绕微球周围传播的耳语画廊模式(WGM)的变化来实现对分子的敏感测量。 通过使用宽带或超连续光源,可以捕获微球,并且可以同时通过可见光和近红外波长激发许多WGM谐振。 在使用波导传输测量谐振之后,可以通过降低光功率来释放微球,并且用不同的微球重复该过程。
    • 67. 发明授权
    • Polysilicon photodetector, methods and applications
    • 多晶硅光电探测器,方法和应用
    • US08861909B2
    • 2014-10-14
    • US13398132
    • 2012-02-16
    • Michal LipsonKyle Preston
    • Michal LipsonKyle Preston
    • G02B6/26G02B6/42H01L31/0368H01L31/105H01L31/0352G02B6/12H01L31/102H01L31/00
    • H01L31/02327G01J1/42G02B6/12004G02B6/29341H01L31/035281H01L31/03682H01L31/09H01L31/105H01L31/182Y02E10/546
    • A silicon photonic photodetector structure, a method for fabricating the silicon photonic photodetector structure and a method for operating a silicon photonic photodetector device that results from the photonic photodetector structure each use a strip waveguide optically coupled with a polysilicon material photodetector layer that may be contiguous with a semiconductor material slab to which is located and formed a pair of electrical contacts separated by the polysilicon material photodetector layer. Within the foregoing silicon photonic photodetector structure and related methods the polysilicon material photodetector layer includes defect states suitable for absorbing an optical signal from the strip waveguide and generating an electrical output signal using at least one of the electrical contacts when the optical signal includes a photon energy less than a band gap energy of a polysilicon material from which is comprised the polysilicon material photodetector layer.
    • 硅光子检测器结构,用于制造硅光子检测器结构的方法和用于操作由光子光电检测器结构产生的硅光子检测器器件的方法各自使用与多晶硅材料光电检测器层光学耦合的带状波导,所述多晶硅材料光电检测器层可以与 半导体材料板,其被定位并形成由多晶硅材料光电检测器层隔开的一对电触头。 在上述硅光子检测器结构和相关方法中,多晶硅材料光电检测器层包括适于吸收来自带状波导的光信号的缺陷状态,并且当光信号包括光子能量时,使用至少一个电触点产生电输出信号 小于多晶硅材料的带隙能量,其中由多晶硅材料构成多晶硅材料光电检测器层。
    • 69. 发明授权
    • Silicon integrated photonic optical parametric amplifier oscillator and wavelength converter
    • 硅集成光子光参量放大器振荡器和波长转换器
    • US08041157B2
    • 2011-10-18
    • US12056224
    • 2008-03-26
    • Mark FosterAlexander GaetaMichal LipsonJay SharpingAmy Turner
    • Mark FosterAlexander GaetaMichal LipsonJay SharpingAmy Turner
    • G02F1/295H04B10/12
    • G02F1/39H04B10/25133H04B10/291
    • The present invention is directed towards systems and methods for adjusting intensity, wavelength and higher and lower frequency components of an optical signal. Photonic apparatus receives a first and a second optical signal. A waveguide provides an anomalous group velocity dispersion the first optical signal or the second optical signal and adjusts intensity or wavelength of the first optical signal or the second optical signal, in response to the anomalous group velocity dispersion. In some embodiments photonic apparatus receives an optical signal comprising a lower frequency component received an amount of time prior to a higher frequency component of the optical signal. A waveguide provides an anomalous group velocity dispersion for the optical signal and adjusts the amount of time between the higher frequency component and the lower frequency component in response to the anomalous group velocity dispersion.
    • 本发明涉及用于调整光信号的强度,波长和较高和较低频率分量的系统和方法。 光子装置接收第一和第二光信号。 波导提供第一光信号或第二光信号的异常组速度色散,并响应于异常群速度色散调整第一光信号或第二光信号的强度或波长。 在一些实施例中,光子器件接收光信号,该光信号包括在光信号的较高频率分量之前接收的时间量的较低频率分量。 波导为光信号提供异常群速度色散,并响应于异常群速度色散调整较高频率分量与较低频率分量之间的时间量。
    • 70. 发明申请
    • SILICON INTEGRATED PHOTONIC OPTICAL PARAMETRIC AMPLIFIER OSCILLATOR AND WAVELENGTH CONVERTER
    • 硅集成光电参数放大器振荡器和波长转换器
    • US20110249932A1
    • 2011-10-13
    • US13167563
    • 2011-06-23
    • Mark FosterAlexander GaetaMichal LipsonJay SharpingAmy Turner
    • Mark FosterAlexander GaetaMichal LipsonJay SharpingAmy Turner
    • G02F1/01
    • G02F1/39H04B10/25133H04B10/291
    • The present invention is directed towards systems and methods for adjusting intensity, wavelength and higher and lower frequency components of an optical signal. Photonic apparatus receives a first and a second optical signal. A waveguide provides an anomalous group velocity dispersion the first optical signal or the second optical signal and adjusts intensity or wavelength of the first optical signal or the second optical signal, in response to the anomalous group velocity dispersion. In some embodiments photonic apparatus receives an optical signal comprising a lower frequency component received an amount of time prior to a higher frequency component of the optical signal. A waveguide provides an anomalous group velocity dispersion for the optical signal and adjusts the amount of time between the higher frequency component and the lower frequency component in response to the anomalous group velocity dispersion.
    • 本发明涉及用于调整光信号的强度,波长和较高和较低频率分量的系统和方法。 光子装置接收第一和第二光信号。 波导提供第一光信号或第二光信号的异常组速度色散,并响应于异常群速度色散调整第一光信号或第二光信号的强度或波长。 在一些实施例中,光子器件接收光信号,该光信号包括在光信号的较高频率分量之前接收的时间量的较低频率分量。 波导为光信号提供异常群速度色散,并响应于异常群速度色散调整较高频率分量与较低频率分量之间的时间量。