会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明授权
    • System and method for detecting and excluding outlier sensors in sensor-based monitoring
    • 用于在基于传感器的监测中检测和排除异常值传感器的系统和方法
    • US07096159B2
    • 2006-08-22
    • US10932578
    • 2004-09-02
    • Zehra CataltepeMing FangClaus NeubauerChao Yuan
    • Zehra CataltepeMing FangClaus NeubauerChao Yuan
    • G06F15/00G06F19/00
    • G05B23/0221G05B17/02
    • A system for detecting one or more faulty sensors in a multi-sensor monitor includes a partitioning module for partitioning sensor values generated by the multi-sensor monitor into two distinct sets, a training set and a validation set. The system also includes a training module for training a model using the sensor values belonging to the training set and applying the model to each sensor value belonging to the validation set so as to determine a range of acceptable sensor values. The system further includes an estimating module for obtaining an estimated sensor value for each sensor using the model, and a fault-determining module for testing at least one sensor combination if a sensor value is not within its range of acceptable sensor values. A sensor combination includes at least one sensor whose estimated sensor value is not within the range of acceptable values.
    • 用于检测多传感器监视器中的一个或多个故障传感器的系统包括分区模块,用于将由多传感器监视器生成的传感器值分成两个不同的集合,训练集和验证集合。 该系统还包括训练模块,用于使用属于训练集的传感器值训练模型,并将该模型应用于属于验证集的每个传感器值,以便确定可接受的传感器值的范围。 该系统还包括估计模块,用于使用该模型获得每个传感器的估计传感器值;以及故障确定模块,用于如果传感器值不在可接受传感器值的范围内,则测试至少一个传感器组合。 传感器组合包括至少一个其估计传感器值不在可接受值的范围内的传感器。
    • 54. 发明授权
    • Method for image alignment under non-uniform illumination variations
    • 在不均匀照明变化下图像对准的方法
    • US06744933B2
    • 2004-06-01
    • US09764586
    • 2001-01-18
    • Shang-Hong LaiMing Fang
    • Shang-Hong LaiMing Fang
    • G06K932
    • G06T7/001G06T7/37G06T2207/30108
    • A method for matching images includes the step of providing a template image and an input image. A Laplacian-of-Gaussian filtered log (LOG-log) image function is computed with respect to the template image and the input image to obtain a Laplacian-of-Gaussian filtered template image and a Laplacian-of-Gaussian filtered input image, respectively. An energy function is minimized to determine estimated geometric transformation parameters and estimated photometric parameters for the input image with respect to the template image. The energy function is formed by weighting non-linear least squared differences of data constraints corresponding to locations of both the Laplacian-of-Gaussian filtered template image and the Laplacian-of-Gaussian filtered input image. The estimated geometric transformation parameters and the estimated photometric parameters are output for further processing. The method allows for image matching under non-uniform illumination variations.
    • 用于匹配图像的方法包括提供模板图像和输入图像的步骤。 计算相对于模板图像和输入图像的拉普拉斯高斯滤波日志(LOG-log)图像函数,以分别获得拉普拉斯高斯滤波模板图像和拉普拉斯高斯滤波输入图像 。 能量函数被最小化以确定关于模板图像的输入图像的估计的几何变换参数和估计的测光参数。 能量函数是通过加权对应于高斯拉普拉斯高斯滤波模板图像和拉普拉斯高斯滤波输入图像的位置的数据约束的非线性最小平方差来形成的。 输出估计的几何变换参数和估计的光度参数用于进一步处理。 该方法允许在不均匀照明变化下的图像匹配。
    • 55. 发明授权
    • Flash system for fast and accurate pattern localization
    • 闪存系统,用于快速准确的模式定位
    • US06546137B1
    • 2003-04-08
    • US09236725
    • 1999-01-25
    • Shang-Hong LaiMing Fang
    • Shang-Hong LaiMing Fang
    • G06K964
    • G06T7/0004G06K9/6203G06T7/74
    • A fast localization with advanced search hierarchy system for fast and accurate object localization in a large search space is based on an assumption that surrounding regions of a pattern within a search range are always fixed. The FLASH system comprises a hierarchical nearest-neighbor search system and an optical-flow based energy minimization system. The hierarchical nearest-neighbor search system produces rough estimates of the transformation parameters for the optical-flow based energy minimization system which provides very accurate estimation results and associated confidence measures.
    • 利用高级搜索层次系统的快速定位,可以在大型搜索空间中快速准确地对对象定位,这是基于搜索范围内的图案的周围区域始终是固定的假设。 FLASH系统包括分层最近邻搜索系统和基于光流的能量最小化系统。 分层最近邻搜索系统产生基于光流的能量最小化系统的变换参数的粗略估计,其提供非常精确的估计结果和相关置信度度量。
    • 56. 发明授权
    • Illumination compensation system for industrial inspection
    • 工业检验照明补偿系统
    • US06445812B1
    • 2002-09-03
    • US09235997
    • 1999-01-22
    • Shang-Hong LaiMing Fang
    • Shang-Hong LaiMing Fang
    • G06K900
    • G06T7/001G06K9/2036G06T5/008G06T2207/10152G06T2207/20064G06T2207/30164
    • An illumination compensation system for correcting smooth intensity variations due to illumination changes is based on an assumption that an underlining image reflectance function is approximately a piecewise constant and that an image irradiance function is spatially smooth. The system first takes the logarithm of an image brightness function. Gradient constraints are then computed using a finite difference. Reliable gradient constraints are selected based on a local uniformity test. A process is subsequently applied to estimate the logarithmic irradiance function. A logarithmic irradiance function is subtracted from the logarithmic image brightness function and an exponential operation of the above subtracted image function is taken and an illumination compensated image is outputted from the system.
    • 用于校正由于照明变化引起的平滑强度变化的照明补偿系统基于下划线图像反射函数近似分段常数并且图像辐照度函数在空间上平滑的假设。 系统首先采用图像亮度函数的对数。 然后使用有限差分计算梯度约束。 基于局部均匀性测试选择可靠的梯度约束。 随后应用过程来估计对数辐照度函数。 从对数图像亮度函数中减去对数辐照函数,并采用上述减法图像函数的指数运算,并从系统输出照明补偿图像。
    • 59. 发明授权
    • Bias field estimation for intensity inhomogeneity correction in MR images
    • MR图像强度不均匀性校正的偏置场估计
    • US06208138B1
    • 2001-03-27
    • US09095792
    • 1998-06-11
    • Shang-Hong LaiMing Fang
    • Shang-Hong LaiMing Fang
    • G01V300
    • G01R33/3875
    • An intensity inhomogeneity correction system includes a log operator which performs a log operation on the intensity values of the original MR image. A regular grid generator partitions the image domain and then a compute and select establishes reliable orientation constraints at grid locations. A bias field surface reconstructor reconstructs a bias field surface from selected orientation constraints with a thin-plate spline by using a preconditioned conjugate gradient. An intensity inhomogeneities remover subtracts an estimated bias function from the original log image and an exponential operation on the bias-field corrected log image provides a corrected image.
    • 强度不均匀性校正系统包括对原始MR图像的强度值执行对数运算的对数运算符。 常规网格生成器分割图像域,然后计算和选择在网格位置建立可靠的方向约束。 偏置场表面重建器通过使用预条件共轭梯度,用薄板样条从选定的取向约束重构偏置场表面。 强度不均匀性去除器从原始对数图像中减去估计偏差函数,并且偏置场校正日志图像上的指数运算提供校正图像。
    • 60. 发明授权
    • Neural network based auto-windowing system for MR images
    • 基于神经网络的MR图像自动窗口系统
    • US06175643B1
    • 2001-01-16
    • US08993230
    • 1997-12-18
    • Shang-Hong LaiMing Fang
    • Shang-Hong LaiMing Fang
    • G06K900
    • G06T3/4046G06T3/4053
    • An adaptive hierarchical neural network based system with online adaptation capabilities has been developed to automatically adjust the display window width and center for MR images. Our windowing system possesses the online training capabilities that make the adaptation of the optimal display parameters to personal preference as well as different viewing conditions possible. The online adaptation capabilities are primarily due to the use of the hierarchical neural networks and the development of a new width/center mapping system. The large training image set is hierarchically organized for efficient user interaction and effective re-mapping of the width/center settings in the training data set. The width/center values are modified in the training data through a width/center mapping function, which is estimated from the new width/center values of some representative images adjusted by the user. The width/center mapping process consists of a global spline mapping for the entire training images as well as a first-order polynomial sequence mapping for the image sequences selected in the user's new adjustment procedure.
    • 已经开发了具有在线适应能力的基于自适应层次神经网络的系统,以自动调整MR图像的显示窗口宽度和中心。 我们的窗口系统具有在线培训功能,可以使最佳显示参数适应个人偏好以及可能的不同观看条件。 在线适应能力主要是由于使用分层神经网络和开发新的宽度/中心映射系统。 大型训练图像集被分层组织,用于有效的用户交互,并有效地重新映射训练数据集中的宽度/中心设置。 通过宽度/中心映射函数在训练数据中修改宽度/中心值,该宽度/中心映射函数根据由用户调整的一些代表性图像的新的宽度/中心值估计。 宽度/中心映射过程由用于整个训练图像的全局样条映射以及在用户的新调整过程中选择的图像序列的一阶多项式序列映射组成。