会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 53. 发明授权
    • Temperature gradient method of nonuniformly poling a body of polymeric
piezoelectric material and novel flexure elements produced thereby
    • 聚合物压电材料体的非均匀极化的温度梯度法和由此产生的新的挠曲元件
    • US4375042A
    • 1983-02-22
    • US209800
    • 1980-11-24
    • Michael A. Marcus
    • Michael A. Marcus
    • C08J7/00H01L41/45H01L41/22
    • H01L41/45H01L41/193H01L41/257Y10S310/80
    • A body of polymeric piezoelectric material is nonuniformly poled by establishing a temperature gradient greater than about 10.degree. C. and less than about 100.degree. C. across the thickness of the body and applying an electric field across the thickness of the body in an amount and for a time sufficient to induce nonuniform polarization in the material, whereby a portion of the body near the surface maintained at a lower temperature receives relatively stronger polarization than a portion near the surface maintained at a higher temperature.In a preferred embodiment of the invention, after poling in one direction in a temperature gradient to more strongly polarize a portion of the material near one surface, the temperature gradient and the field polarity are reversed, to polarize a portion of the body near the opposite surface in an opposite direction.Flexure mode elements comprising continuous bodies of polymeric piezoelectric material nonuniformly poled according to the method of the present invention exhibit relatively strong flexure mode response to applied fields. A novel flexure mode element produced by one of the methods of the present invention is characterized by having relatively strong polarization near one surface in a direction pointing into the body of material. Another novel flexure mode element produced by one of the preferred methods of the present invention is characterized by having relatively strong polarization in portions near opposite sides of the body and in opposite directions pointing inward toward the body of the material.
    • 聚合物压电材料体通过在身体的厚度上建立大于约10℃且小于约100℃的温度梯度而不均匀地极化,并以一定的量施加穿过身体厚度的电场,并且 足以引起材料中的非均匀偏振的时间,由此保持在较低温度的表面附近的部分的体积比维持在较高温度的表面附近的部分相对更强。 在本发明的一个优选实施例中,在一个方向上以一个温度梯度极化,以使一个表面附近的材料的一部分极化极化,使温度梯度和场极性相反,以使靠近相对的一部分的体的极化 表面在相反的方向。 包括根据本发明的方法不均匀极化的聚合物压电材料的连续体的弯曲模式元件对施加的场表现出相对较强的挠曲模式响应。 通过本发明的方法之一产生的新型挠曲模式元件的特征在于在指向材料体的方向上在一个表面附近具有相对强的极化。 通过本发明的优选方法之一产生的另一种新颖的弯曲模式元件的特征在于,在靠近主体的相对侧的部分中具有相对强烈的偏振,并且朝向材料本体的相反方向。
    • 54. 发明授权
    • Electrode print speed synchronization in electrostatic printer
    • 电极在静电打印机中打印速度同步
    • US08888256B2
    • 2014-11-18
    • US13544104
    • 2012-07-09
    • Michael A. MarcusHrishikesh V. Panchawagh
    • Michael A. MarcusHrishikesh V. Panchawagh
    • B41J2/085B41J29/38B41J2/07B41J2/115
    • B41J2/115B41J2/085B41J2/09
    • A system and method of printing includes providing print and non-print drop formation waveforms to a drop formation device of a drop ejector in response to input print data to form print and non-print drops, respectively, from a liquid jet. First and second charging waveforms are provided to a charging electrode of a drop charging device when a relative motion of a receiver and the drop ejector is provided or measured at first and second speeds, respectively. The first and second charging waveforms are independent of input print data and include first and second voltage states. The drop formation device and the drop charging device are synchronized to produce print and non-print drop charge states on print and non-print drops, respectively. A deflection device causes print and non-print drops to travel along print and non-print drop paths, respectively, with the non-print drops being collected by a catcher.
    • 打印系统和方法包括响应于输入打印数据向液滴喷射器的液滴形成装置提供打印和非打印液滴形成波形,分别从液体喷射形成打印和非打印液滴。 当分别以第一和第二速度提供或测量接收器和落下喷射器的相对运动时,第一和第二充电波形被提供给液滴充电装置的充电电极。 第一和第二充电波形独立于输入打印数据,并且包括第一和第二电压状态。 液滴形成装置和液滴充电装置被同步以分别在打印和非打印液滴上产生打印和非打印液滴充电状态。 偏转装置使得打印和非打印墨滴分别沿着打印和非打印滴下路径行进,而非打印墨滴由捕获器收集。
    • 56. 发明申请
    • METALLIC AND SEMICONDUCTING CARBON NANOTUBE SORTING
    • 金属和半导体碳纳米管分选
    • US20140262972A1
    • 2014-09-18
    • US13798445
    • 2013-03-13
    • Shashishekar P. AdigaHrishikesh V. PanchawaghMichael A. Marcus
    • Shashishekar P. AdigaHrishikesh V. PanchawaghMichael A. Marcus
    • B03C7/12
    • B03C5/00B41J2/00B41J2/03B82Y40/00G01N27/44704G01N27/44743
    • A method of separating metallic semiconducting carbon nanotubes includes providing a source of a mixture of semiconducting and metallic carbon nanotubes in a carrier liquid with one of the semiconducting and metallic carbon nanotubes being functionalized to carry a charge. The mixture is pressurized to cause a liquid jet of the mixture to be emitted through a nozzle. A drop formation mechanism modulates the liquid jet to form from the jet first and second drops traveling along a path. An electric field modulating device, positioned relative to the jet, produces first and second electric fields. A deflection device applies the first electric field as the first drop is formed to concentrate the functionalized carbon nanotubes in the first drop and applies the second electric field as the second drop is formed. The deflection device causes the first or second drop to begin traveling along another path.
    • 分离金属半导体碳纳米管的方法包括在载体液体中提供半导体和金属碳纳米管的混合物的源,其中半导体和金属碳纳米管之一被官能化以携带电荷。 将混合物加压以使混合物的液体射流通过喷嘴发射。 液滴形成机构调制液体射流,以从沿着路径行进的射流第一和第二液滴形成。 相对于射流定位的电场调制装置产生第一和第二电场。 当形成第一液滴时,偏转装置施加第一电场,以将官能化的碳纳米管集中在第一液滴中,并在形成第二滴时施加第二电场。 偏转装置使得第一或第二液滴开始沿另一路径行进。
    • 57. 发明授权
    • Functional liquid deposition using continuous liquid
    • 使用连续液体进行功能性液相沉积
    • US08770722B2
    • 2014-07-08
    • US13432017
    • 2012-03-28
    • Hrishikesh V. PanchawaghYonglin XieCarolyn R. EllingerMichael A. MarcusThomas W. Palone
    • Hrishikesh V. PanchawaghYonglin XieCarolyn R. EllingerMichael A. MarcusThomas W. Palone
    • B41J2/05
    • B41J2/14016B41J2/14201B41J2/18B41J2/211B41J2202/12
    • A liquid dispenser includes a first liquid supply that provides a carrier liquid under pressure that flows from the first liquid supply through a first liquid supply channel through a liquid dispensing channel through a liquid return channel and back to the first liquid supply continuously during a drop dispensing operation. A second liquid supply provides a functional liquid to the liquid dispensing channel through a second liquid supply channel. A drop formation device, associated with an interface of the second liquid supply channel and the liquid dispensing channel, is selectively actuated to form a discrete drop of the functional liquid in the carrier liquid flowing through the liquid dispensing channel. The functional liquid is immiscible in the carrier liquid. A drop ejection device is selectively actuated to divert the discrete drop of the functional liquid and a portion of the carrier liquid flowing through the liquid dispensing channel toward the outlet opening of the liquid dispensing channel.
    • 液体分配器包括第一液体供应装置,其提供压力下的载体液体,所述载体液体在第一液体供应通过第一液体供应通道通过液体分配通道通过液体返回通道流动并且在滴液分配期间连续返回到第一液体供应 操作。 第二液体供应通过第二液体供应通道向液体分配通道提供功能液体。 选择性地致动与第二液体供应通道和液体分配通道的界面相关联的液滴形成装置,以在流过液体分配通道的载体液体中形成离散的功能液滴。 功能液体在载液中是不混溶的。 液滴喷射装置被选择性地致动以将功能液体的离散液滴和流过液体分配通道的载液的一部分转向液体分配通道的出口。
    • 60. 发明授权
    • Drop placement error reduction in electrostatic printer
    • 静电打印机放置误差减少
    • US08646882B2
    • 2014-02-11
    • US13424426
    • 2012-03-20
    • Michael A. MarcusHrishikesh V. PanchawaghShashishekar P. Adiga
    • Michael A. MarcusHrishikesh V. PanchawaghShashishekar P. Adiga
    • B41J2/07
    • B41J2/03B41J2/085B41J2/09B41J2/185B41J2002/032B41J2002/1853
    • Drop formation devices are provided with drop formation waveforms to modulate liquid jets to cause portions of the liquid jets to form print drops having a jet breakoff length Lp in a print drop breakoff length range Rp and non-print drops having a jet breakoff length Lnp in a non-print drop breakoff length range Rnp. A timing delay device shifts the timing of the waveforms supplied to drop formation devices of first and second nozzle groups so that print drops formed from first and second nozzle groups are not aligned relative to each other. A charging device includes a charge electrode that is positioned relative to the breakoff length Lp and breakoff length Lnp such that there is a difference in electric field strength at the two breakoff lengths to produce a print drop charge state on print drops and a non-print drop charge state on non-print drops.
    • 液滴形成装置具有液滴形成波形以调制液体射流,以使部分液体射流形成具有喷射断裂长度范围Rp中的喷射断裂长度Lp的喷墨滴和具有喷射断裂长度Lnp的非印刷液滴 非打印掉落断点长度范围Rnp。 定时延迟装置移动提供给第一和第二喷嘴组的液滴形成装置的波形的定时,使得由第一和第二喷嘴组形成的印刷液滴彼此不对准。 充电装置包括相对于断裂长度Lp和断裂长度Lnp定位的充电电极,使得在两个断裂长度处存在电场强度的差异,以在打印液滴上产生打印液滴充电状态和非打印 在非打印墨滴上放电充电状态。