会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 52. 发明授权
    • Method and apparatus for identifying noise environments from noisy signals
    • 用于从噪声信号中识别噪声环境的方法和装置
    • US07266494B2
    • 2007-09-04
    • US10985896
    • 2004-11-10
    • James G. DroppoAlejandro AceroLi Deng
    • James G. DroppoAlejandro AceroLi Deng
    • G10L21/02
    • G10L21/0208G10L15/20G10L21/0216
    • A method and apparatus are provided for identifying a noise environment for a frame of an input signal based on at least one feature for that frame. To identify the noise environment, a probability for a noise environment is determined by applying the noisy input feature vector to a distribution of noisy training feature vectors. In one embodiment, each noisy training feature vector in the distribution is formed by modifying a set of clean training feature vectors. In one embodiment, the probabilities of the noise environments for past frames are included in the identification of an environment for a current frame. In one embodiment, a correction vector is then selected based on the identified noise environment.
    • 提供了一种方法和装置,用于基于该帧的至少一个特征来识别输入信号的帧的噪声环境。 为了识别噪声环境,通过将噪声输入特征向量应用于噪声训练特征向量的分布来确定噪声环境的概率。 在一个实施例中,通过修改一组干净的训练特征向量来形成分布中的每个噪声训练特征向量。 在一个实施例中,过去帧的噪声环境的概率被包括在当前帧的环境的识别中。 在一个实施例中,然后基于所识别的噪声环境来选择校正矢量。
    • 57. 发明授权
    • Phase sensitive model adaptation for noisy speech recognition
    • 嘈杂语音识别的相敏模型适应
    • US08214215B2
    • 2012-07-03
    • US12236530
    • 2008-09-24
    • Jinyu LiLi DengDong YuYifan GongAlejandro Acero
    • Jinyu LiLi DengDong YuYifan GongAlejandro Acero
    • G10L15/14
    • G10L15/065G10L15/20
    • A speech recognition system described herein includes a receiver component that receives a distorted speech utterance. The speech recognition also includes an updater component that is in communication with a first model and a second model, wherein the updater component automatically updates parameters of the second model based at least in part upon joint estimates of additive and convolutive distortions output by the first model, wherein the joint estimates of additive and convolutive distortions are estimates of distortions based on a phase-sensitive model in the speech utterance received by the receiver component. Further, distortions other than additive and convolutive distortions, including other stationary and nonstationary sources, can also be estimated used to update the parameters of the second model.
    • 本文描述的语音识别系统包括接收失真的语音话语的接收机组件。 所述语音识别还包括与第一模型和第二模型通信的更新器组件,其中所述更新器组件至少部分地基于由所述第一模型输出的加法和卷积失真的联合估计来自动更新所述第二模型的参数 其中,加法和卷积失真的联合估计是基于由接收器部件接收的语音发声中的相敏模型的失真估计。 此外,还可以估计用于更新第二模型参数的除加法和卷积失真之外的失真,包括其他静止和非平稳源。
    • 58. 发明授权
    • Piecewise-based variable-parameter Hidden Markov Models and the training thereof
    • 基于分段的可变参数隐马尔科夫模型及其训练
    • US08160878B2
    • 2012-04-17
    • US12211114
    • 2008-09-16
    • Dong YuLi DengYifan GongAlejandro Acero
    • Dong YuLi DengYifan GongAlejandro Acero
    • G10L15/14G10L15/20
    • G10L15/144
    • A speech recognition system uses Gaussian mixture variable-parameter hidden Markov models (VPHMMs) to recognize speech under many different conditions. Each Gaussian mixture component of the VPHMMs is characterized by a mean parameter μ and a variance parameter Σ. Each of these Gaussian parameters varies as a function of at least one environmental conditioning parameter, such as, but not limited to, instantaneous signal-to-noise-ratio (SNR). The way in which a Gaussian parameter varies with the environmental conditioning parameter(s) can be approximated as a piecewise function, such as a cubic spline function. Further, the recognition system formulates the mean parameter μ and the variance parameter Σ of each Gaussian mixture component in an efficient form that accommodates the use of discriminative training and parameter sharing. Parameter sharing is carried out so that the otherwise very large number of parameters in the VPHMMs can be effectively reduced with practically feasible amounts of training data.
    • 语音识别系统使用高斯混合可变参数隐马尔可夫模型(VPHMM)来识别许多不同条件下的语音。 VPHMM的每个高斯混合分量的特征在于平均参数μ和方差参数&Sgr。 这些高斯参数中的每一个作为至少一个环境调节参数的函数而变化,例如但不限于瞬时信噪比(SNR)。 高斯参数随环境条件参数变化的方式可以近似为分段函数,如三次样条函数。 此外,识别系统制定均值参数μ和方差参数&Sgr; 每个高斯混合分量以有效的形式适应使用歧视性训练和参数共享。 执行参数共享,以便通过实际可行的训练数据量可以有效地减少VPHMM中非常大量的参数。
    • 59. 发明授权
    • Parameter clustering and sharing for variable-parameter hidden markov models
    • 可变参数隐马尔可夫模型的参数聚类和共享
    • US08145488B2
    • 2012-03-27
    • US12211115
    • 2008-09-16
    • Dong YuLi DengYifan GongAlejandro Acero
    • Dong YuLi DengYifan GongAlejandro Acero
    • G10L15/14
    • G10L15/142
    • A speech recognition system uses Gaussian mixture variable-parameter hidden Markov models (VPHMMs) to recognize speech. The VPHMMs include Gaussian parameters that vary as a function of at least one environmental conditioning parameter. The relationship of each Gaussian parameter to the environmental conditioning parameter(s) is modeled using a piecewise fitting approach, such as by using spline functions. In a training phase, the recognition system can use clustering to identify classes of spline functions, each class grouping together spline functions which are similar to each other based on some distance measure. The recognition system can then store sets of spline parameters that represent respective classes of spline functions. An instance of a spline function that belongs to a class can make reference to an associated shared set of spline parameters. The Gaussian parameters can be represented in an efficient form that accommodates the use of sharing in the above-summarized manner.
    • 语音识别系统使用高斯混合可变参数隐马尔可夫模型(VPHMM)来识别语音。 VPHMM包括作为至少一个环境调节参数的函数而变化的高斯参数。 每个高斯参数与环境条件参数的关系使用分段拟合方法建模,例如通过使用样条函数。 在训练阶段,识别系统可以使用聚类来识别样条函数的类别,每个类别根据一些距离度量将彼此相似的样条函数分组在一起。 识别系统然后可以存储表示各种样条函数的样条参数集合。 属于类的样条函数的一个实例可以引用相关联的一组样条参数。 高斯参数可以以适合以上述方式共享使用的有效形式来表示。