会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 52. 发明授权
    • Process for production of silicon nitride sintered material
    • 氮化硅烧结体的制造方法
    • US5833917A
    • 1998-11-10
    • US879484
    • 1997-06-19
    • Keiichiro WatanabeYouky Bessyo
    • Keiichiro WatanabeYouky Bessyo
    • C04B35/626C04B35/584C04B35/593C03B15/02C04B35/58
    • C04B35/5935
    • In a process for producing a silicon nitride sintered material, a silicon nitride raw material powder selected from raw material powder lots such that the silicon nitride raw material powder has a dispersion .delta.N.beta..sub.1 of weight fraction of .beta.-silicon nitride, of 65% or less, is used. A process for producing a silicon nitride sintered material controls the firing conditions so that the raw material being fired gives, at any stage of firing, a dispersion .delta.N.beta..sub.2 of weight fraction of .beta.-silicon nitride, of 65% or less between the surface portion and the central portion. The first process allows for production of a silicon nitride sintered material having excellent properties in high-temperature strength, etc., at a high reproducibility and stability. The second process allows for production, of in any production batch, a silicon nitride sintered material very low in scattering of properties (e.g., density and strength) between the central portion and the surface portion.
    • 在制造氮化硅烧结体的方法中,选自原料粉末批料的氮化硅原料粉末,使得氮化硅原料粉末具有65%的氮化硅原料粉末的重量分数的分散度Nβ1, 或更少。 一种制造氮化硅烧结材料的方法控制烧制条件,使烧制的原料在任何烧成阶段得到β-硅氮化物重量分数的分散体δNβ2在65% 表面部分和中心部分。 第一种方法允许以高再现性和稳定性生产具有优异的高温强度等性能的氮化硅烧结材料。 第二种方法允许在任何生产批次中生产在中心部分和表面部分之间非常低的散射特性(例如密度和强度)的氮化硅烧结材料。
    • 53. 发明授权
    • Silicon nitride ceramic
    • 氮化硅陶瓷
    • US5691261A
    • 1997-11-25
    • US589171
    • 1996-01-22
    • Akira TakahashiMasaaki MasudaKeiichiro Watanabe
    • Akira TakahashiMasaaki MasudaKeiichiro Watanabe
    • C04B35/626C04B35/593C04B35/587
    • C04B35/5935
    • A silicon nitride ceramic possessing excellent strength of the surface, including a silicon nitride and a rare earth oxide compound and being characterized in that the ratio of the transverse rupture strength, at room temperature, of the fired surface used as a tensile surface to the transverse rupture strength, at room temperature, of the worked surface used as a tensile surface subjected to working so as to have a surface roughness of R.sub.max 0.8 .mu.m or less is 0.7 or more, and the strength ratio is satisfied even when any portion besides the fired surface is utilized as the tensile surface to be worked to have a surface roughness of R.sub.max 0.8 .mu.m or less. The present invention also provides a process for producing a silicon nitride ceramic including the steps of: (1) mixing .alpha.-Si.sub.3 N.sub.4 powder and .beta.-Si.sub.3 N.sub.4 powder to obtain a raw material powder which satisfies the formula 0.05.ltoreq..beta./.alpha.+.beta..ltoreq.0.50, in which .alpha. refers to the weight of .alpha.-Si.sub.3 N.sub.4 powder and .beta. refers to the weight of .beta.-Si.sub.3 N.sub.4 powder; (2) mixing at least one sintering aid with the raw material powder; (3) forming the powder mixture to give a compact; and (4) firing the compact at a temperature ranging from 1800.degree. to 2000.degree. C. under a nitrogen atmosphere having an atmospheric pressure of at least 1 atm.
    • 具有优异的表面强度的氮化硅陶瓷,包括氮化硅和稀土氧化物,其特征在于,用作拉伸表面的烧结表面的横向断裂强度与横向断裂强度之比 作为经受加工的表面粗糙度Rmax为0.8μm以下的作为拉伸面的加工面的室温下的断裂强度为0.7以上,即使在除了 作为待加工的拉伸面,具有Rmax0.8μm以下的表面粗糙度。 本发明还提供了一种制造氮化硅陶瓷的方法,包括以下步骤:(1)将α-Si 3 N 4粉末和β-Si 3 N 4粉末混合以获得满足公式0.05 /β/α+β
    • 56. 发明授权
    • Heat resisting low expansion zirconyl phosphate-zircon composite
    • 耐热低膨胀型磷酸锆锆石复合材料
    • US4883781A
    • 1989-11-28
    • US94743
    • 1987-09-09
    • Keiichiro WatanabeTsuneaki Ohashi
    • Keiichiro WatanabeTsuneaki Ohashi
    • C04B35/447C04B35/48
    • C04B35/481C04B35/447
    • Heat resisting low expansion zirconyl phosphate-zircon composite bodies are disclosed, which contain zirconyl phosphate and zircon as a main crystalline phase and a secondary crystalline phase, respectively. The heat resisting low expansion zirconyl phosphate-zircon composite bodies have a coefficient of thermal expansion in a temperature range from room temperature to 1,400.degree. C. being not more than 30.times.10-7/.degree. C. and a melting point being not less than 1,600.degree. C. The composite bodies have a chemical composition essentially consisting of 58.2 to 65.4% by weight of ZrO.sub.2, 17.4 to 37.1% by weight of P.sub.2 O.sub.5, and 1.5 to 19.0% by weight of SiO.sub.2. The heat resisting low expansion zirconyl phosphate-zircon composite bodies optionally contain MgO and Al.sub.2 O.sub.3 in a total amount of not more than 2.5% by weight or 0.1 to 4% by weight of Nb.sub.2 O.sub.5. A process for producing such zirconyl phosphate-zircon composite bodies is also disclosed.
    • 公开了耐热低膨胀性磷酸锆锆石复合体,其分别含有磷酸锆和锆石作为主结晶相和二次结晶相。 耐热低膨胀型磷酸锆锆锆复合体的体系在室温〜1400℃的温度范围内的热膨胀系数为30×10 -7 /℃以下,熔点为1600℃以上 复合体具有基本上由58.2至65.4重量%的ZrO 2,17.4至37.1重量%的P 2 O 5和1.5至19.0重量%的SiO 2组成的化学组成。 耐热低膨胀性磷酸锆锆锆复合体任意地含有MgO和Al 2 O 3,其总量不超过2.5重量%或0.1〜4重量%的Nb 2 O 5。 还公开了一种制备这种磷酸锆锆石复合体的方法。