会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 55. 发明授权
    • High voltage semiconductor device with lateral series capacitive structure
    • 具有横向串联电容结构的高压半导体器件
    • US08080848B2
    • 2011-12-20
    • US11801819
    • 2007-05-10
    • Mohamed N. DarwishRobert Kuo-Chang Yang
    • Mohamed N. DarwishRobert Kuo-Chang Yang
    • H01L29/78H01L21/336
    • H01L29/7835H01L29/0634H01L29/0692H01L29/407H01L29/66659
    • According to the present invention, semiconductor device breakdown voltage can be increased by embedding field shaping regions within a drift region of the semiconductor device. A controllable current path extends between two device terminals on the top surface of a planar substrate, and the controllable current path includes the drift region. Each field shaping region includes two or more electrically conductive regions that are electrically insulated from each other, and which are capacitively coupled to each other to form a voltage divider dividing a potential between the first and second terminals. One or more of the electrically conductive regions are isolated from any external electrical contact. Such field shaping regions can provide enhanced electric field uniformity in current-carrying parts of the drift region, thereby increasing device breakdown voltage.
    • 根据本发明,可以通过在半导体器件的漂移区域内嵌入场成形区域来增加半导体器件击穿电压。 可控电流路径在平面基板的顶表面上的两个器件端子之间延伸,并且可控电流路径包括漂移区域。 每个场整形区域包括彼此电绝缘并且彼此电容耦合以形成分压第一和第二端子之间的电势的分压器的两个或更多个导电区域。 一个或多个导电区域与任何外部电触点隔离。 这种场成形区域可以在漂移区域的载流部分中提供增强的电场均匀性,从而增加器件击穿电压。
    • 56. 发明申请
    • Power MOSFET With Recessed Field Plate
    • 功率MOSFET与嵌入式现场板
    • US20110039384A1
    • 2011-02-17
    • US12912811
    • 2010-10-27
    • Mohamed N. Darwish
    • Mohamed N. Darwish
    • H01L21/336
    • H01L29/7813H01L21/26586H01L29/0696H01L29/1095H01L29/407H01L29/41766H01L29/42368H01L29/66734H01L29/7808H01L29/7809
    • A trench MOSFET contains a recessed field plate (RFP) trench adjacent the gate trench. The RFP trench contains an RFP electrode insulated from the die by a dielectric layer along the walls of the RFP trench. The gate trench has a thick bottom oxide layer, and the gate and RFP trenches are preferably formed in the same processing step and are of substantially the same depth. When the MOSFET operates in the third quadrant (with the source/body-to-drain junction forward-biased), the combined effect of the RFP and gate electrodes significantly reduces in the minority carrier diffusion current and reverse-recovery charge. The RFP electrode also functions as a recessed field plates to reduce the electric field in the channel regions when the MOSFET source/body to-drain junction reverse-biased.
    • 沟槽MOSFET包含与栅极沟槽相邻的凹陷场板(RFP)沟槽。 RFP沟槽包含沿着RFP沟槽的壁通过电介质层与裸片绝缘的RFP电极。 栅极沟槽具有厚的底部氧化物层,并且栅极和RFP沟槽优选地在相同的处理步骤中形成并且具有基本上相同的深度。 当MOSFET在第三象限(源极/体对漏极结正向偏置)中工作时,RFP和栅电极的组合效应在少数载流子扩散电流和反向恢复电荷中显着降低。 当MOSFET源极/体对漏极结反向偏置时,RFP电极还用作凹陷场板,以减小沟道区域中的电场。
    • 59. 发明授权
    • Trench MIS device having implanted drain-drift region and thick bottom oxide
    • 沟槽MIS器件具有植入漏极漂移区域和厚底部氧化物
    • US07326995B2
    • 2008-02-05
    • US11158382
    • 2005-06-22
    • Mohamed N. DarwishKing Owyang
    • Mohamed N. DarwishKing Owyang
    • H01L29/72
    • H01L29/7813H01L21/2253H01L21/28185H01L21/28194H01L21/28211H01L21/823487H01L29/0634H01L29/0847H01L29/0878H01L29/1095H01L29/42368
    • A trench MIS device is formed in a P-epitaxial layer that overlies an N+ substrate. In one embodiment, the device includes a thick oxide layer at the bottom of the trench and an N-type drain-drift region that extends from the bottom of the trench to the substrate. The thick insulating layer reduces the capacitance between the gate and the drain and therefore improves the ability of the device to operate at high frequencies. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The thick bottom oxide layer is formed on the bottom of the trench while the sidewall spacers are still in place. Therefore, in embodiments where the thermal budget of the process is limited following the implant of the drain-drift region, the PN junctions between the drain-drift region and the epitaxial layer are self-aligned with the edges of the thick bottom oxide. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The relatively flat dopant profile in the channel region provides an increased punchthrough voltage and low threshold voltage.
    • 沟槽MIS器件形成在覆盖在N +衬底上的P外延层中。 在一个实施例中,器件包括在沟槽底部的厚氧化物层和从沟槽的底部延伸到衬底的N型漏 - 漂移区。 厚的绝缘层减小了栅极和漏极之间的电容,从而提高了器件在高频下工作的能力。 优选地,漏极漂移区域至少部分地通过在沟槽的侧壁上制造间隔物并且在侧壁间隔物之间​​并通过沟槽的底部注入N型掺杂剂而形成。 厚的底部氧化物层形成在沟槽的底部,同时侧壁间隔物仍然在位。 因此,在漏极 - 漂移区的注入之后,工艺的热预算受到限制的实施例中,漏 - 漂移区和外延层之间的PN结与厚的底部氧化物的边缘自对准。 漏极漂移区可以比在N外延层中形成的常规“漂移区”更重的掺杂。 因此,器件具有低导通电阻。 通道区域中相对平坦的掺杂物分布提供了增加的穿通电压和低阈值电压。