会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明授权
    • Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
    • 生产纳米级石墨烯和无机血小板及其纳米复合材料的方法
    • US07892514B2
    • 2011-02-22
    • US11709274
    • 2007-02-22
    • Bor Z. JangAruna Zhamu
    • Bor Z. JangAruna Zhamu
    • C01B31/00
    • B82Y40/00B82Y30/00C01B32/15C01B32/22C01B32/225C01B32/23C01B33/40C01B2204/04C01P2004/24C09C1/44C09C1/46
    • Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets. Alternatively, rather than heating, step (a) is followed by a step of dispersing the halogen-intercalated compound in a liquid medium which is subjected to ultrasonication for exfoliating the halogen-intercalated compound to produce the platelets, which are dispersed in the liquid medium. The halogen can be readily captured and re-used, thereby significantly reducing the impact of halogen to the environment. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.
    • 公开了一种剥离层状材料(例如石墨和氧化石墨)以产生厚度小于100nm,通常小于10nm,通常在0.34nm和1.02nm之间的纳米级片晶的方法。 该方法包括:(a)在高于卤素的熔点或升华点的第一温度下以足够的蒸汽压将粉末形式的层状材料经受卤素蒸气,持续足以引起卤素分子 穿透层状材料的层间空间,形成稳定的卤素插层化合物; 和(b)在高于卤素沸点的第二温度下加热卤素插层的化合物,使得驻留在层间空间中的卤素原子或分子剥离层状材料以产生血小板。 或者,步骤(a)不是加热,而是将卤素插入化合物分散在液体介质中的步骤,该液体介质经过超声波处理以使卤素插层化合物剥离以产生分散在液体介质中的血小板 。 可以容易地捕获和重新使用卤素,从而显着降低卤素对环境的影响。 该方法还可以包括将血小板分散在聚合物或单体溶液或悬浮液中作为前体步骤的纳米复合制备的步骤。
    • 53. 发明授权
    • Mass production of nano-scaled platelets and products
    • 大规模生产纳米级血小板和产品
    • US07785492B1
    • 2010-08-31
    • US11526489
    • 2006-09-26
    • Bor Z. JangAruna ZhamuJiusheng Guo
    • Bor Z. JangAruna ZhamuJiusheng Guo
    • C04B14/00C04B16/00C04B18/00C04B20/06C01B31/04
    • B82Y40/00B82Y30/00C01B32/19C01B32/22C01B32/23C01B33/40C01B2204/02C01B2204/04
    • Disclosed is a process for exfoliating a layered material to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The process comprises: (a) charging a layered material to an intercalation chamber comprising a gaseous environment at a first temperature and a first pressure sufficient to cause gas species to penetrate into the interstitial space between layers of the layered material, forming a gas-intercalated layered material; and (b) operating a discharge valve to rapidly eject the gas-intercalated layered material through a nozzle into an exfoliation zone at a second pressure and a second temperature, allowing gas species residing in the interstitial space to exfoliate the layered material to produce the platelets. The gaseous environment preferably contains only environmentally benign gases that are reactive (e.g., oxygen) or non-reactive (e.g., noble gases) with the layered material. The process can additionally include dispersing the platelets in a matrix material to form a nanocomposite. The process also can include an additional process of re-compressing the nana-scaled platelets into a product such as a flexible graphite sheet.
    • 公开了一种剥离层状材料以产生厚度小于100nm,通常小于10nm,通常在0.34nm和1.02nm之间的纳米级片晶的方法。 该方法包括:(a)在第一温度和足以使气体物质渗入层状材料层之间的间隙空间的第一温度和第一压力下将分层材料装入包含气态环境的嵌入室,形成气体插入 分层材料; 和(b)操作排出阀,以便在第二压力和第二温度下通过喷嘴将气体插入的层状材料快速喷射到剥离区域中,允许驻留在间隙空间中的气体物质剥离层状材料以产生血小板 。 气态环境优选地仅含有与层状材料具有反应性(例如氧)或非反应性(例如惰性气体)的环境友好气体。 该方法还可以包括将血小板分散在基质材料中以形成纳米复合材料。 该方法还可以包括将纳米级血小板重新压缩到诸如柔性石墨片的产品中的另外的过程。
    • 55. 发明申请
    • Process for producing nano graphene reinforced composite particles for lithium battery electrodes
    • 用于生产用于锂电池电极的纳米石墨烯增强复合颗粒的方法
    • US20100176337A1
    • 2010-07-15
    • US12319812
    • 2009-01-13
    • Aruna ZhamuBor Z. JangJinjun Shi
    • Aruna ZhamuBor Z. JangJinjun Shi
    • H01M4/88
    • H01M4/1391H01M4/1395H01M4/38H01M4/386H01M4/387H01M4/485H01M4/505H01M4/525H01M4/5825H01M4/587H01M4/62H01M4/625H01M10/052Y02E60/122Y02T10/7011
    • A process for producing solid nanocomposite particles for lithium metal or lithium ion battery electrode applications is provided. In one preferred embodiment, the process comprises: (A) Preparing an electrode active material in a form of fine particles, rods, wires, fibers, or tubes with a dimension smaller than 1 μm; (B) Preparing separated or isolated nano graphene platelets with a thickness less than 50 nm; (C) Dispersing the nano graphene platelets and the electrode active material in a precursor fluid medium to form a suspension wherein the fluid medium contains a precursor matrix material dispersed or dissolved therein; and (D) Converting the suspension to the solid nanocomposite particles, wherein the precursor matrix material is converted into a protective matrix material reinforced by the nano graphene platelets and the electrode active material is substantially dispersed in the protective matrix material. For a lithium ion battery anode application, the matrix material is preferably amorphous carbon, polymeric carbon, or meso-phase carbon. Such solid nanocomposite particles provide a high anode capacity and good cycling stability. For a cathode application, the resulting lithium metal or lithium ion battery exhibits an exceptionally high cycle life.
    • 提供了一种生产用于锂金属或锂离子电池电极应用的固体纳米复合材料颗粒的方法。 在一个优选实施方案中,该方法包括:(A)制备尺寸小于1μm的细颗粒,棒,线,纤维或管的形式的电极活性材料; (B)制备厚度小于50nm的分离或分离的纳米石墨烯血小板; (C)将纳米石墨烯片和电极活性物质分散在前体流体介质中以形成悬浮液,其中流体介质包含分散或溶解在其中的前体基质材料; 和(D)将悬浮液转化为固体纳米复合物颗粒,其中前体基质材料转化为由纳米石墨烯片晶增强的保护基质材料,并且电极活性材料基本上分散在保护基质材料中。 对于锂离子电池阳极应用,基体材料优选为无定形碳,聚合碳或中间相碳。 这种固体纳米复合材料颗粒提供高阳极容量和良好的循环稳定性。 对于阴极应用,所得到的锂金属或锂离子电池具有非常高的循环寿命。
    • 56. 发明授权
    • Electro-catalyst composition, fuel cell electrode, and membrane-electrode assembly
    • 电催化剂组合物,燃料电池电极和膜 - 电极组件
    • US07722981B2
    • 2010-05-25
    • US11518565
    • 2006-09-11
    • Bor Z. JangAruna ZhamuJiusheng Guo
    • Bor Z. JangAruna ZhamuJiusheng Guo
    • H01M4/00H01B1/24
    • H01M4/8605H01B1/04H01B1/122H01B1/24H01M4/8807H01M4/881H01M4/8832H01M4/8835H01M4/8839H01M4/8842H01M4/886H01M2008/1095
    • Disclosed are an electro-catalyst composition and a precursor electro-catalyst composition (e.g., ink or suspension) for use in a fuel cell that exhibits improved power output. The electro-catalyst composition comprises: (a) a catalyst un-supported or supported on an electronically conducting carrier (e.g., carbon black particles); and (b) an ion-conducting and electron-conducting coating material in physical contact with the catalyst and/or coated on a surface of the carrier, wherein the coating material has an electronic conductivity no less than 10−4 S/cm (preferably no less than 10−2 S/cm) and an ion conductivity no less than 10−5 S/cm (preferably no less than 10−3 S/cm). Also disclosed are a fuel cell electrode comprising this composition, a membrane-electrode assembly (MEA) comprising this composition, and a fuel cell comprising this composition.
    • 公开了用于燃料电池中的电催化剂组合物和前体电催化剂组合物(例如油墨或悬浮液),其表现出改进的功率输出。 电催化剂组合物包括:(a)未支撑或负载在电子导电载体(例如炭黑颗粒)上的催化剂; 和(b)与所述催化剂物理接触和/或涂覆在所述载体的表面上的离子传导和电子传导涂层材料,其中所述涂层材料具有不小于10 -4 S / cm的电子传导率 不小于10-2S / cm),离子电导率不小于10-5S / cm(优选不小于10-3S / cm)。 还公开了包含该组合物的燃料电池电极,包含该组合物的膜 - 电极组件(MEA)和包含该组合物的燃料电池。
    • 59. 发明申请
    • Conductive nanocomposite-based electrodes for lithium batteries
    • 用于锂电池的导电纳米复合物电极
    • US20090305135A1
    • 2009-12-10
    • US12156644
    • 2008-06-04
    • Jinjun ShiAruna ZhamuBor Z. Jang
    • Jinjun ShiAruna ZhamuBor Z. Jang
    • H01M4/36H01M4/62H01M4/44H01M4/50H01M4/42H01M4/48
    • H01M4/13B82Y30/00H01M4/131H01M4/136H01M4/625H01M2004/025Y02E60/122
    • This invention provides a nanocomposite-based lithium battery electrode comprising: (a) A porous aggregate of electrically conductive nano-filaments that are substantially interconnected, intersected, physically contacted, or chemically bonded to form a three-dimensional network of electron-conducting paths, wherein the nano-filaments have a diameter or thickness less than 1 μm (preferably less than 500 nm); and (b) Sub-micron or nanometer-scale electro-active particles that are bonded to a surface of the nano-filaments with a conductive binder material, wherein the particles comprise an electro-active material capable of absorbing and desorbing lithium ions and wherein the electro-active material content is no less than 25% by weight based on the total weight of the particles, the binder material, and the filaments. Preferably, these electro-active particles are coated with a thin carbon layer. This electrode can be an anode or a cathode. The battery featuring such an anode or cathode exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
    • 本发明提供了一种基于纳米复合材料的锂电池电极,其包括:(a)导电纳米丝的多孔聚集体,其基本上互连,相交,物理接触或化学键合以形成电子传导路径的三维网络, 其中所述纳米丝具有小于1μm(优选小于500nm)的直径或厚度; 和(b)用导电粘合剂材料结合到纳米丝表面的亚微米或纳米级电活性颗粒,其中所述颗粒包含能够吸收和解吸锂离子的电活性材料,其中 基于颗粒,粘合剂材料和长丝的总重量,电活性材料含量不小于25重量%。 优选地,这些电活性颗粒被涂覆有薄碳层。 该电极可以是阳极或阴极。 具有这种阳极或阴极的电池具有非常高的比容量,极好的可逆容量和较长的循环寿命。
    • 60. 发明申请
    • Hybrid anode compositions for lithium ion batteries
    • 锂离子电池用混合阳极组合物
    • US20090117466A1
    • 2009-05-07
    • US11982662
    • 2007-11-05
    • Aruna ZhamuBor Z. Jang
    • Aruna ZhamuBor Z. Jang
    • H01M4/40H01M4/58H01M10/24
    • H01M4/587H01M4/02H01M4/133H01M4/134H01M4/364H01M4/366H01M4/38H01M4/386H01M4/387H01M4/40H01M4/42H01M4/44H01M4/463H01M4/485H01M4/505H01M4/525H01M4/583H01M10/0525H01M2004/021Y02T10/7011
    • The present invention provides an exfoliated graphite-based hybrid material composition for use as an electrode, particularly as an anode of a lithium ion battery. The composition comprises: (a) micron- or nanometer-scaled particles or coating which are capable of absorbing and desorbing alkali or alkaline metal ions (particularly, lithium ions); and (b) exfoliated graphite flakes that are substantially interconnected to form a porous, conductive graphite network comprising pores, wherein at least one of the particles or coating resides in a pore of the network or attached to a flake of the network and the exfoliated graphite amount is in the range of 5% to 90% by weight and the amount of particles or coating is in the range of 95% to 10% by weight. Also provided is a lithium secondary battery comprising such a negative electrode (anode). The battery exhibits an exceptional specific capacity, excellent reversible capacity, and long cycle life.
    • 本发明提供一种用作电极的剥离石墨基混合材料组合物,特别是作为锂离子电池的阳极。 组合物包括:(a)能够吸收和解吸碱金属或碱金属离子(特别是锂离子)的微米级或纳米级的微粒或涂层; 和(b)基本上相互连接以形成包含孔的多孔导电石墨网的剥离的石墨薄片,其中所述颗粒或涂层中的至少一个驻留在网的孔中或附着于网的薄片上,并且所述剥离的石墨 的量在5重量%至90重量%的范围内,并且颗粒或涂层的量在95重量%至10重量%的范围内。 还提供了包含这种负极(阳极)的锂二次电池。 电池具有特殊的比容量,极好的可逆容量和较长的循环寿命。