会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明授权
    • Minimising carbon transfer in an electrolytic cell
    • 最小化电解槽中的碳转移
    • US07628904B2
    • 2009-12-08
    • US10531650
    • 2003-10-15
    • Les StrezovIvan RatchevSteve OsbornSergey Alexander Bliznyukov
    • Les StrezovIvan RatchevSteve OsbornSergey Alexander Bliznyukov
    • C25C3/28C25C7/04
    • C25C7/04C22B5/02C22B9/14C22B34/129C25C3/00C25C3/28C25C7/005
    • An electrochemical cell for electrochemical reduction of a metal oxide in a solid state is disclosed. The cell includes a molten electrolyte (14), an anode (10) formed from carbon in contact with the electrolyte, a cathode (20) formed at least in part from the metal oxide in contact with the electrolyte, and a membrane (28) that is permeable to oxygen anions and is impermeable to carbon in ionic and non-ionic forms positioned between the cathode and the anode to thereby prevent migration of carbon from the anode to the cathode. The membrane includes a body (32) and a lining (34) on the surface of the body on the cathode side of the membrane. The lining is formed from a material that is inert with respect to dissolved metal in the electrolyte and is impermeable to the dissolved metal. An electrochemical method based on the cell is also disclosed.
    • 公开了一种用于电化学还原固态金属氧化物的电化学电池。 电池包括熔融电解质(14),由与电解质接触的碳形成的阳极(10),至少部分地从与电解质接触的金属氧化物形成的阴极(20)和膜(28) 其对氧阴离子是可渗透的,并且对位于阴极和阳极之间的离子和非离子形式的碳是不可渗透的,从而防止碳从阳极迁移到阴极。 膜在膜的阴极侧的主体表面上包括主体(32)和衬里(34)。 衬里由对电解质中溶解的金属是惰性的材料形成,并且对于溶解的金属是不可渗透的。 还公开了一种基于电池的电化学方法。
    • 42. 发明申请
    • Method for electrolyzing molten salt, electrolytic cell, and process for producing ti using said method
    • 使用所述方法电解熔融盐,电解池和制造方法的方法
    • US20090152122A1
    • 2009-06-18
    • US11991072
    • 2006-08-22
    • Tadashi OgasawaraMakoto YamaguchiToru UenishiMasahiko HoriKazuo TakemuraKatsunori Dakeshita
    • Tadashi OgasawaraMakoto YamaguchiToru UenishiMasahiko HoriKazuo TakemuraKatsunori Dakeshita
    • C25B1/26C25B9/00C25C3/28
    • C22B34/129C22B5/04C22B34/1268C25C3/02C25C7/005
    • The present invention provides a method for electrolyzing molten salt that can enhance the concentration of metal-fog forming metal in the molten salt by carrying out the electrolysis under conditions that the molten salt containing the chloride of metal-fog forming metal is supplied from one end of an electrolytic cell to a space between an anode and a cathode in a continuous or intermittent manner to provide a flow rate in one direction to the molten salt in the vicinity of the surface of the cathode and thus to allow the molten salt to flow in one direction in the vicinity of the surface of the cathode. According to the present invention, while high current efficiency is maintained, only the molten salt enriched with metal-fog forming metal such as Ca can be effectively taken out. Further, this method can easily be carried out by using the electrolytic cell according to the present invention. Furthermore, the application of the method for electrolyzing molten salt according to the present invention to the production of Ti by Ca reduction can realize the production of metallic Ti with high efficiency. Thus, the method for electrolyzing molten salt, the electrolytic cell, and the process for producing Ti, each according to the present invention, can be effectively utilized in the production of Ti by Ca reduction.
    • 本发明提供了一种电解熔融盐的方法,该方法可以通过在从一端供给含有金属雾形成金属的氯化物的熔融盐的条件下进行电解,从而提高熔融盐中金属雾形成金属的浓度 的电解池以连续或间歇的方式连接到阳极和阴极之间的空间,以在阴极表面附近向熔融盐提供沿一个方向的流速,从而允许熔融盐流入 在阴极表面附近的一个方向。 根据本发明,在保持高电流效率的同时,仅有效地除去富含金属雾形成金属如Ca的熔盐。 此外,该方法可以通过使用根据本发明的电解槽容易地进行。 另外,通过将本发明的熔盐电解方法应用于通过Ca还原生产Ti,可以实现高效率地生产金属Ti。 因此,根据本发明的电解熔融盐,电解槽和制造Ti的方法的方法可以有效地用于通过Ca还原生产Ti。
    • 45. 发明申请
    • Method for producing ti or ti alloy through reduction by ca (as amended)
    • 通过ca还原制备钛或钛合金的方法(经修改)
    • US20070181435A1
    • 2007-08-09
    • US10589949
    • 2005-02-01
    • Tadashi OgasawaraMakoto YamaguchiMasahiko HoriToru UenishiKatsunori Dakeshita
    • Tadashi OgasawaraMakoto YamaguchiMasahiko HoriToru UenishiKatsunori Dakeshita
    • C25C3/28
    • C25C3/28C22B5/04C22B34/1268C22B34/129
    • The method by the invention in which a molten salt is held in a reactor cell 1 to perform electrolysis in the molten salt of the reactor cell, the molten salt containing CaCl2 while Ca being dissolved in the molten salt, and Ti or Ti alloys are generated in the molten salt by supplying a metallic chloride containing TiCl4 into the molten salt such that the metallic chloride containing TiCl4 is caused to react with Ca generated on a cathode electrode side by the electrolysis, makes it possible to produce the high-purity Ti metals or Ti alloy. Furthermore, the reactor cell 1 includes a membrane 4 which partitions an inside of the reactor cell into a side of an anode electrode 2 and a side of a cathode electrode 3, and the membrane 4 blocks the movement of Ca generated on the cathode electrode side in the reactor cell toward the anode electrode side while permitting the molten salt to flow in the reactor cell, which allows a back reaction by Ca to be effectively suppressed. When an electroconductive porous material is used as a cathode electrode, productivity can further be improved.
    • 本发明的方法,其中将熔融盐保持在反应器电池1中以在反应器电池的熔融盐中进行电解,所述熔融盐含有CaCl 2,同时Ca溶解在熔融盐中 ,并且在熔融盐中产生Ti或Ti合金,通过向熔融盐中加入含有TiCl 4的金属氯化物,使含有TiCl 4的金属氯化物反应 通过电解在阴极电极侧产生的Ca,可以生产高纯Ti金属或Ti合金。 此外,反应器电池1包括将反应器单元的内部分隔成阳极电极2和阴极电极3的一侧的膜4,并且膜4阻挡在阴极电极侧产生的Ca的移动 在反应器电池中朝向阳极电极侧,同时允许熔融盐在反应器电池中流动,这允许有效地抑制Ca的反向反应。 当使用导电多孔材料作为阴极时,可进一步提高生产率。
    • 47. 发明授权
    • Method of manufacturing titanium and titanium alloy products
    • 钛和钛合金制品的制造方法
    • US07156974B2
    • 2007-01-02
    • US10486723
    • 2002-08-16
    • Les StrezovIvan RatchevSteve OsbornKannappar Mukunthan
    • Les StrezovIvan RatchevSteve OsbornKannappar Mukunthan
    • C25C3/28
    • C25C5/04C22B34/129C25C3/28
    • A method of manufacturing titanium or titanium alloy semi-finished or ready-to-use products is disclosed. The method includes forming shaped bodies of titanium oxide particles and positioning the shaped bodies is an electrolytic cell which includes: an anode, a cathode, and a molten electrolyte. The shaped bodies are positioned to form at least a part of the cathode. The electrolyte includes cations of a metal that is capable of chemically reducing titanium oxide. The method further includes reducing the titanium oxide to titanium in a solid state in the electrolytic cell so that the shaped bodies become shaped bodies of titanium sponge. Finally, the method includes processing the shaped bodies of titanium sponge to reduce the volume or at least one of the dimensions of the bodies thereby to form the semi-finished or ready-to-use products.
    • 公开了制造钛或钛合金半成品或即用型产品的方法。 该方法包括形成氧化钛颗粒的成形体并且定位成形体是包括阳极,阴极和熔融电解质的电解池。 成形体被定位成形成阴极的至少一部分。 电解质包括能够化学还原氧化钛的金属的阳离子。 该方法还包括在电解槽中将钛氧化物还原成固态的钛,使成形体成为海绵钛成形体。 最后,该方法包括处理钛海绵体的成形体以减小体积或至少其中一个尺寸,从而形成半成品或即用型产品。
    • 48. 发明申请
    • Minimising carbon transfer in an electrolytic cell
    • 最小化电解槽中的碳转移
    • US20060180462A1
    • 2006-08-17
    • US10531650
    • 2003-10-15
    • Les StrezovIvan RatchevSteve OsbornSergey Bliznyukov
    • Les StrezovIvan RatchevSteve OsbornSergey Bliznyukov
    • C25C3/00
    • C25C7/04C22B5/02C22B9/14C22B34/129C25C3/00C25C3/28C25C7/005
    • An electrochemical cell for electrochemical reduction of a metal oxide in a solid state is disclosed. The cell includes a molten electrolyte (14), an anode (10) formed from carbon in contact with the electrolyte, a cathode (20) formed at least in part from the metal oxide in contact with the electrolyte, and a membrane (28) that is permeable to oxygen anions and is impermeable to carbon in ionic and non-ionic forms positioned between the cathode and the anode to thereby prevent migration of carbon from the anode to the cathode. The membrane includes a body (32) and a lining (34) on the surface of the body on the cathode side of the membrane. The lining is formed from a material that is inert with respect to dissolved metal in the electrolyte and is impermeable to the dissolved metal. An electrochemical method based on the cell is also disclosed.
    • 公开了一种用于电化学还原固态金属氧化物的电化学电池。 电池包括熔融电解质(14),由与电解质接触的碳形成的阳极(10),至少部分地从与电解质接触的金属氧化物形成的阴极(20)和膜(28) 其对氧阴离子是可渗透的,并且对位于阴极和阳极之间的离子和非离子形式的碳是不可渗透的,从而防止碳从阳极迁移到阴极。 膜在膜的阴极侧的主体表面上包括主体(32)和衬里(34)。 衬里由对电解质中溶解的金属是惰性的材料形成,并且对于溶解的金属是不可渗透的。 还公开了一种基于电池的电化学方法。
    • 49. 发明申请
    • Electrolytic apparatus for use in oxide electrowinning method
    • 用于氧化物电解提取方法的电解设备
    • US20060151326A1
    • 2006-07-13
    • US10528883
    • 2004-07-23
    • Kenji KoizumiNobuo OkamuraTadahiro WashiyaShinichi Aose
    • Kenji KoizumiNobuo OkamuraTadahiro WashiyaShinichi Aose
    • C25C1/22
    • G21C19/46C22B7/001C22B34/129C22B59/00Y02P10/214Y02W30/883Y10S204/07
    • An electrolytic apparatus for an oxide electrolytic method having a constitution such that in the interior of an electrolytic vessel 10, a common cathode 12 and two types of anodes different in shape and arrangement (here, a first anode 14 arranged beneath the cathode, and a second anode 16 arranged in parallel to the cathode) are provided; a first electrolysis controller 18 is connected between the cathode and the first anode, and a second electrolysis controller 20 is connected between the cathode and the second anode. The electrolytic processing of the substance 22 to be processed in the electrolytic vessel is carried out in such a way that a pair of the cathode and one of the anodes is used for main electrolysis and a pair of the cathode and the other anode is used for auxiliary electrolysis. By this apparatus, prevention of the ununiform distribution of the electrodeposit, improvement of the processing speed and improvement of the durability of the crucible are achieved, whereby the recycling of spent nuclear fuels based on the nonaqueous reprocessing method is made feasible in a commercial scale.
    • 一种用于氧化物电解方法的电解装置,其结构使得在电解槽10的内部具有公共阴极12和形状和布置不同的两种类型的阳极(这里是阴极下方的第一阳极14和 提供与阴极平行设置的第二阳极16) 第一电解控制器18连接在阴极和第一阳极之间,第二电解控制器20连接在阴极和第二阳极之间。 在电解容器中进行处理的物质22的电解处理以使阴极和阳极中的一对用于主电解的方式进行,一对阴极和另一个阳极用于 辅助电解。 通过该装置,可以防止电沉积物的不均匀分布,提高加工速度,提高坩埚的耐久性,从而以商业规模使基于非水再生处理方法的废核燃料的再循环成为可行。