会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 43. 发明申请
    • METHODS FOR FABRICATING A SPLIT CHARGE STORAGE NODE SEMICONDUCTOR MEMORY
    • 用于制造分离充电储存节点半导体存储器的方法
    • US20080153222A1
    • 2008-06-26
    • US11614048
    • 2006-12-20
    • Chungho LeeAshot Melik-MartirosianHiroyuki KinoshitaKuo-Tung ChangSugimo RinjiWei Zheng
    • Chungho LeeAshot Melik-MartirosianHiroyuki KinoshitaKuo-Tung ChangSugimo RinjiWei Zheng
    • H01L21/336
    • H01L21/28282H01L29/792
    • Methods are provided for fabricating a split charge storage node semiconductor memory device. In accordance with one embodiment the method comprises the steps of forming a gate insulator layer having a first physical thickness and a first effective oxide thickness on a semiconductor substrate and forming a control gate electrode having a first edge and a second edge overlying the gate insulator layer. The gate insulator layer is etched to form first and second undercut regions at the edges of the control gate electrode, the first and second undercut region each exposing a portion of the semiconductor substrate and an underside portion of the control gate electrode. First and second charge storage nodes are formed in the undercut regions, each of the charge storage nodes comprising an oxide-storage material-oxide structure having a physical thickness substantially equal to the first physical thickness and an effective oxide thickness less than the first effective oxide thickness.
    • 提供了用于制造分离电荷存储节点半导体存储器件的方法。 根据一个实施例,该方法包括以下步骤:在半导体衬底上形成具有第一物理厚度和第一有效氧化物厚度的栅极绝缘体层,并形成具有覆盖栅极绝缘体层的第一边缘和第二边缘的控制栅极电极 。 栅极绝缘体层被蚀刻以在控制栅电极的边缘处形成第一和第二底切区域,第一和第二底切区域各自暴露半导体衬底的一部分和控制栅电极的下侧部分。 第一和第二电荷存储节点形成在底切区域中,每个电荷存储节点包括具有基本上等于第一物理厚度的物理厚度和小于第一有效氧化物的有效氧化物厚度的氧化物存储材料 - 氧化物结构 厚度。
    • 46. 发明授权
    • Method and apparatus for eliminating word line bending by source side implantation
    • 通过源侧植入消除字线弯曲的方法和装置
    • US07029975B1
    • 2006-04-18
    • US10839561
    • 2004-05-04
    • Shenqing FangKuo-Tung ChangPavel FastenkoKazuhiro Mizutani
    • Shenqing FangKuo-Tung ChangPavel FastenkoKazuhiro Mizutani
    • H01L21/336
    • H01L27/11521H01L21/28273H01L27/115H01L29/42324H01L29/513
    • A method and apparatus for coupling to a source line is disclosed. A semiconductor structure having an array of memory cells arranged in rows and columns is described. The array of memory cells includes a source region that is implanted with n-type dopants isolated between an adjoining pair of the non-intersecting STI regions and isolated from a drain region during the implantation. A source contact is located along a row of drain contacts that are coupled to drain regions of a row of memory cells and the source contact is coupled to the source region for providing electrical coupling with a plurality of source lines. The isolating of the implanted source region from the drain region during the implanting enables coupling of the source contact to the source lines while maintaining the n-type dopants between the STI regions and avoiding lateral diffusion to a bit-line.
    • 公开了一种用于耦合到源极线的方法和装置。 描述了具有排列成行和列的存储单元阵列的半导体结构。 存储单元阵列包括源区域,其注入在相邻的一对不相交的STI区域之间隔离并在植入期间与漏区隔离的n型掺杂剂。 源极触点沿着一排漏极触点排列,其被连接到一行存储器单元的漏极区域,并且源极触点耦合到源极区域以提供与多个源极线的电耦合。 在植入期间将注入的源极区域与漏极区域隔离使得能够将源极接触耦合到源极线,同时保持STI区域之间的n型掺杂剂并且避免横向扩散到位线。
    • 47. 发明申请
    • Memory cell with reduced DIBL and Vss resistance
    • 具有降低的DIBL和Vss电阻的存储单元
    • US20060035431A1
    • 2006-02-16
    • US10915771
    • 2004-08-11
    • Shenqing FangKuo-Tung ChangPavel FastenkoZhigang Wang
    • Shenqing FangKuo-Tung ChangPavel FastenkoZhigang Wang
    • H01L21/336
    • H01L29/66825
    • According to one exemplary embodiment, a method for fabricating a floating gate memory cell on substrate comprises a step of forming a spacer adjacent to a source sidewall of a stacked gate structure, where the stacked gate structure is situated over a channel region in substrate. The method further comprises forming a high energy implant doped region adjacent to the spacer in the source region of substrate. The method further comprises forming a recess in a source region of the substrate, where the recess has a sidewall, a bottom, and a depth, and where the sidewall of the recess is situated adjacent to a source of the floating gate memory cell. According to this exemplary embodiment, the spacer causes the source to have a reduced lateral straggle and diffusion in the channel region, which causes a reduction in drain induced barrier lowering (DIBL) in the floating gate memory cell.
    • 根据一个示例性实施例,用于在衬底上制造浮动栅极存储器单元的方法包括形成与层叠栅极结构的源极侧壁相邻的间隔物的步骤,其中堆叠的栅极结构位于衬底中的沟道区域之上。 该方法还包括在衬底的源区中形成与间隔物相邻的高能注入掺杂区。 该方法还包括在衬底的源极区域中形成凹部,其中凹部具有侧壁,底部和深度,并且凹部的侧壁位于与浮动栅极存储单元的源极相邻的位置。 根据该示例性实施例,间隔件导致源极在通道区域中具有减小的横向偏移和扩散,这导致浮动栅极存储单元中的漏极感应势垒降低(DIBL)的减小。
    • 50. 发明授权
    • Method of building an EPROM cell without drain disturb and reduced
select gate resistance
    • 构建EPROM单元而无漏极干扰和降低选择栅极电阻的方法
    • US5981340A
    • 1999-11-09
    • US939397
    • 1997-09-29
    • Kuo-Tung ChangErwin J. PrinzCraig T. Swift
    • Kuo-Tung ChangErwin J. PrinzCraig T. Swift
    • G11C16/04H01L27/115H01L21/336
    • H01L27/115G11C16/0433
    • A semiconductor device (70) includes a memory cell having a select transistor (67) and a storage transistor (65) having a relatively uniform tunnel dielectric thickness under both the floating gate (651) of the storage transistor and the select gate (671) of the select transistor (67). The select transistor (67) is adjacent to the drain region (68) for the memory cell to nearly eliminate a drain disturb problem. During programming, the control gate (652) is at a negative potential, and the drain region (68) is at a positive potential. The drain potential is sufficiently low to not degrade the tunnel dielectric layer (42) of the select transistor (67). During erase, a positive potential is applied to the control gate (652). The relatively uniform tunnel dielectric layer (42) thickness of the select transistor (67) allows for a faster operating device by increasing the read current of the memory device.
    • 半导体器件(70)包括具有在存储晶体管的浮动栅极(651)和选择栅极(671)两者下具有相对均匀的隧道电介质厚度的选择晶体管(67)和存储晶体管(65)的存储单元, 的选择晶体管(67)。 选择晶体管(67)与用于存储单元的漏极区域(68)相邻,几乎消除了漏极干扰问题。 在编程期间,控制栅极(652)处于负电位,漏区(68)处于正电位。 漏极电位足够低以不降低选择晶体管(67)的隧道介电层(42)。 在擦除期间,向控制栅极施加正电位(652)。 选择晶体管(67)的相对均匀的隧道介电层(42)的厚度通过增加存储器件的读取电流而允许更快的操作器件。