会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 45. 发明授权
    • Integration of fin-based devices and ETSOI devices
    • 集成了鳍式设备和ETSOI设备
    • US08779511B2
    • 2014-07-15
    • US13530887
    • 2012-06-22
    • Narasimhulu KanikeKangguo ChengRamachandra DivakaruniCarl J. Radens
    • Narasimhulu KanikeKangguo ChengRamachandra DivakaruniCarl J. Radens
    • H01L27/088
    • H01L27/1211H01L21/845
    • Thin semiconductor regions and thick semiconductor regions are formed oven an insulator layer. Thick semiconductor regions include at least one semiconductor fin. A gate conductor layer is patterned to form disposable planar gate electrodes over ETSOI regions and disposable side gate electrodes on sidewalls of semiconductor fins. End portions of the semiconductor fins are vertically recessed to provide thinned fin portions adjacent to an unthinned fin center portion. After appropriate masking by dielectric layers, selective epitaxy is performed on planar source and drain regions of ETSOI field effect transistors (FETs) to form raised source and drain regions. Further, fin source and drain regions are grown on the thinned fin portions. Source and drain regions, fins, and the disposable gate electrodes are planarized. The disposable gate electrodes are replaced with metal gate electrodes. FinFETs and ETSOI FETs are provided on the same semiconductor substrate.
    • 薄半导体区域和厚半导体区域被形成为绝缘体层。 厚半导体区域包括至少一个半导体鳍片。 图案化栅极导体层以在半导体鳍片的侧壁上的ETSOI区域和一次侧栅电极上形成一次性平面栅电极。 半导体翅片的端部垂直凹入,以提供与未固定的翅片中心部分相邻的变薄的翅片部分。 在通过介电层适当掩蔽之后,在ETSOI场效应晶体管(FET)的平面源极和漏极区域上进行选择性外延以形成升高的源极和漏极区域。 此外,翅片源极和漏极区域在薄的鳍部上生长。 源极和漏极区域,鳍片和一次性栅电极被平坦化。 一次性栅电极被金属栅电极代替。 FinFET和ETSOI FET设置在相同的半导体衬底上。
    • 48. 发明授权
    • Patterned strained semiconductor substrate and device
    • 图形应变半导体衬底和器件
    • US07682859B2
    • 2010-03-23
    • US11931836
    • 2007-10-31
    • Kangguo ChengRamachandra Divakaruni
    • Kangguo ChengRamachandra Divakaruni
    • H01L21/00
    • H01L29/1054H01L21/823412H01L29/739H01L29/78687
    • A method that includes forming a pattern of strained material and relaxed material on a substrate; forming a strained device in the strained material; and forming a non-strained device in the relaxed material is disclosed. In one embodiment, the strained material is silicon (Si) in either a tensile or compressive state, and the relaxed material is Si in a normal state. A buffer layer of silicon germanium (SiGe), silicon carbon (SiC), or similar material is formed on the substrate and has a lattice constant/structure mis-match with the substrate. A relaxed layer of SiGe, SiC, or similar material is formed on the buffer layer and places the strained material in the tensile or compressive state. In another embodiment, carbon-doped silicon or germanium-doped silicon is used to form the strained material. The structure includes a multi-layered substrate having strained and non-strained materials patterned thereon.
    • 一种包括在基板上形成应变材料和松弛材料的图案的方法; 在应变材料中形成应变装置; 并且公开了在松弛材料中形成非应变装置。 在一个实施例中,应变材料是处于拉伸或压缩状态的硅(Si),松弛材料是处于正常状态的Si。 在衬底上形成硅锗(SiGe),硅碳(SiC)或类似材料的缓冲层,其晶格常数/结构与衬底失配。 在缓冲层上形成SiGe,SiC或类似材料的松散层,并将应变材料置于拉伸或压缩状态。 在另一个实施例中,使用掺碳硅或锗掺杂硅来形成应变材料。 该结构包括具有图案化的应变和非应变材料的多层基底。
    • 50. 发明申请
    • METHOD OF MAKING A FINFET DEVICE STRUCTURE HAVING DUAL METAL AND HIGH-K GATES
    • US20090148986A1
    • 2009-06-11
    • US11951552
    • 2007-12-06
    • Kangguo ChengRamachandra Divakaruni
    • Kangguo ChengRamachandra Divakaruni
    • H01L21/04
    • H01L29/785H01L27/1211H01L29/517H01L29/66795
    • A method of making a FinFET device structure, includes: providing a semiconductor-on-insulator (SOI) substrate having a semiconductor layer on an insulating layer on a base (e.g., semiconductor) layer; forming a cap layer (e.g., silicon nitride) on the SOI substrate; forming, on the insulating layer, first and second semiconductor fins with a first cap layer on the first fin and a second cap layer on the second fin; providing a first high-k dielectric layer across the first and the second cap layers and the first and second fins; providing a first metal layer onto the first high-k dielectric layer; providing a first semiconductor layer onto the first metal layer; removing the first semiconductor layer, the first metal layer, and the first high-k dielectric layer from the second cap layer, the second fin and from regions adjacent to the second fin; providing a second high-k dielectric layer onto the second cap layer, the second fin and a portion of the first metal layer; providing a second metal layer onto the second high-k dielectric layer, the second metal layer having a composition different than the first metal layer; providing a second semiconductor layer onto the second metal layer in a region above the second cap layer and into the regions adjacent to the second fin; removing the second semiconductor layer from the second metal layer in the region above the second cap layer, from adjoining regions and from the regions adjacent to the second fin; removing the second metal layer and the second high-k dielectric layer from a region above the first cap layer and from adjoining regions above the first semiconductor layer; removing the first metal layer, the first high-k dielectric layer, the first semiconductor layer, the second metal layer, the second high-k dielectric layer and the second semiconductor layer from regions above a plane containing top surfaces of the first and the second cap layers; forming first and second gates; forming respective source and drain regions within portions of the first and the second fins adjacent to the first and second gates, and then removing portions of the first and the second semiconductor layers, the first and the second high-k dielectric layers and the first and the second metal layers from a medial region between the first and the second fins.