会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明申请
    • Method and apparatus for training a system model with gain constraints
    • 用于训练具有增益约束的系统模型的方法和装置
    • US20060074501A1
    • 2006-04-06
    • US11267812
    • 2005-11-04
    • Eric HartmanStephen PicheMark Gerules
    • Eric HartmanStephen PicheMark Gerules
    • G05B13/02
    • G06N3/02G05B13/027G05B13/042G05B13/048G05B17/02
    • Method and apparatus for training a system model with gain constraints. A method is disclosed for training a steady-state model, the model having an input and an output and a mapping layer for mapping the input to the output through a stored representation of a system. A training data set is provided having a set of input data u(t) and target output data y(t) representative of the operation of a system. The model is trained with a predetermined training algorithm which is constrained to maintain the sensitivity of the output with respect to the input substantially within user defined constraint bounds by iteratively minimizing an objective function as a function of a data objective and a constraint objective. The data objective has a data fitting learning rate and the constraint objective has constraint learning rate that are varied as a function of the values of the data objective and the constraint objective after selective iterative steps.
    • 用于训练具有增益约束的系统模型的方法和装置。 公开了一种用于训练稳态模型的方法,该模型具有输入和输出以及用于通过存储的系统表示将输入映射到输出的映射层。 提供具有代表系统的操作的一组输入数据u(t)和目标输出数据y(t)的训练数据集。 用预定的训练算法来训练该模型,该训练算法被约束以通过将作为数据目标和约束目标的函数的目标函数迭代地最小化来维持相对于基本上在用户定义的约束边界内的输入的输出的灵敏度。 数据目标具有数据拟合学习率,并且约束目标具有约束学习速率,其作为数据目标的值和选择性迭代步骤之后的约束目标的函数而变化。
    • 43. 发明申请
    • Process parameter estimation in controlling emission of a non-particulate pollutant into the air
    • 控制空气中非微粒污染物排放的过程参数估计
    • US20060045804A1
    • 2006-03-02
    • US11003336
    • 2004-12-06
    • Scott BoydenStephen Piche
    • Scott BoydenStephen Piche
    • G05D7/00
    • G05B13/027B01D2257/302B01D2257/404G05B13/048Y10T436/12
    • A parameter value estimator is provided for a process performed primarily to control emission of a particular non-particulate pollutant, such as NOx and SO2, into the air. The process has multiple process parameters (MPPs) including a parameter representing an amount of the particular non-particulate pollutant emitted. The parameter value estimator includes either a neural network process model or a non-neural network process model. In either case the model represents a relationship between one of the MPPs, other than the parameter representing the amount of the emitted particular non-particulate pollutant, and one or more other of the MPPs. Also included is a processor configured with the logic, e.g. programmed software, to estimate a value of the one MPP based on a value of each of the one or more other MPPs and the one model.
    • 为主要用于控制特定非微粒污染物(例如NO x和SO 2)的排放进入空气的过程提供了参数值估计器。 该过程具有多个过程参数(MPP),其包括表示特定非微粒污染物排放量的参数。 参数值估计器包括神经网络过程模型或非神经网络过程模型。 在任一情况下,该模型表示MPP之间的关系,而不是表示所发射的特定非微粒污染物的量的参数以及MPP中的一个或多个另外的MPP之间的关系。 还包括配置有逻辑的处理器,例如 基于一个或多个其他MPP和一个模型中的每一个的值来估计一个MPP的值。
    • 44. 发明申请
    • APC process control when process parameters are inaccurately measured
    • 过程参数不准确测量时的APC过程控制
    • US20060045803A1
    • 2006-03-02
    • US11002439
    • 2004-12-03
    • Scott BoydenStephen Piche
    • Scott BoydenStephen Piche
    • G05D7/00
    • G05B13/027B01D2257/302B01D2257/404G05B13/048Y10T436/12
    • A controller is provided for directing control of a process performed to control an amount of a pollutant emitted into the air. The process has multiple process parameters (MPPs) The controller includes either a neural network process model or a non-neural network process model. Whichever type model is included, it will represent a relationship between one of the MPPs and other of the MPPs. The controller also includes a control processor having the logic to determine the validity of a measured value of the one MPP based on the one model. The control processor directs control of the process in accordance with the measured value of the one MPP only if the measured value of the one MPP is determined to be valid. On the other hand, if the measured value is determined to be invalid, the control processor may direct control of the process in accordance with an estimated value of the one MPP.
    • 提供控制器用于引导控制执行的处理以控制排放到空气中的污染物的量。 该过程具有多个过程参数(MPP)。控制器包括神经网络过程模型或非神经网络过程模型。 无论哪种类型的模型都包含在内,它将代表一个MPP和其他MPP之间的关系。 该控制器还包括控制处理器,该控制处理器具有基于一个模型来确定一个MPP的测量值的有效性的逻辑。 只有当一个MPP的测量值被确定为有效时,控制处理器才根据一个MPP的测量值来指导该过程的控制。 另一方面,如果确定测量值无效,则控制处理器可以根据一个MPP的估计值来直接控制处理。
    • 45. 发明授权
    • Method and apparatus for minimizing error in dynamic and steady-state processes for prediction, control, and optimization
    • 用于最小化用于预测,控制和优化的动态和稳态过程中的误差的方法和装置
    • US09329582B2
    • 2016-05-03
    • US13608578
    • 2012-09-10
    • Eugene BoeStephen PicheGregory D. Martin
    • Eugene BoeStephen PicheGregory D. Martin
    • G05B9/02G05B13/02G05B13/04G05B17/02
    • G05B13/027G05B13/042G05B13/048G05B17/02G09B23/02
    • A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    • 在预测,控制和优化环境中提供独立的静态和动态模型的方法使用独立的静态模型(20)和独立的动态模型(22)。 静态模型(20)是一种严格的预测模型,可在广泛的数据范围内进行训练,而动态模型(22)则是在窄范围的数据上进行训练。 使用静态模型(20)的增益K来缩放动态模型(22)的增益k。 被称为双变量的模型(22)的强制动态部分通过增益K和k的比率来缩放。 此后,将输入到静态模型(20)的新值与先前稳态值之间的差用作动态模型(22)的输入。 然后将预测的动态输出与先前的稳态值相加以提供预测值Y.
    • 47. 发明授权
    • Method and apparatus for minimizing error in dynamic and steady-state processes for prediction, control, and optimization
    • 用于最小化用于预测,控制和优化的动态和稳态过程中的误差的方法和装置
    • US08311673B2
    • 2012-11-13
    • US11359296
    • 2006-02-21
    • Eugene BoeStephen PicheGregory D. Martin
    • Eugene BoeStephen PicheGregory D. Martin
    • G05B19/04G06F19/00
    • G05B13/027G05B13/042G05B13/048G05B17/02G09B23/02
    • A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    • 在预测,控制和优化环境中提供独立的静态和动态模型的方法使用独立的静态模型(20)和独立的动态模型(22)。 静态模型(20)是一种严格的预测模型,可在广泛的数据范围内进行训练,而动态模型(22)则是在窄范围的数据上进行训练。 使用静态模型(20)的增益K来缩放动态模型(22)的增益k。 被称为双变量的模型(22)的强制动态部分通过增益K和k的比率来缩放。 此后,将输入到静态模型(20)的新值与先前稳态值之间的差用作动态模型(22)的输入。 然后将预测的动态输出与先前的稳态值相加以提供预测值Y.
    • 48. 发明授权
    • System for optimizing power generating unit
    • 优化发电机组的系统
    • US08295953B2
    • 2012-10-23
    • US13293568
    • 2011-11-10
    • Stephen Piche
    • Stephen Piche
    • G05B13/02
    • H02J3/38F23N2023/40F23N2023/44H02J2003/007Y02E40/76Y02E60/76Y04S10/545Y04S40/22
    • A method and apparatus for optimizing the operation of a single or multiple power generating units using advanced optimization, modeling, and control techniques. In one embodiment, a plurality of component optimization systems for optimizing power generating unit components are sequentially coordinated to allow optimized values determined by a first component optimization system to be fed forward for use as an input value to a subsequent component optimization system. A unit optimization system may be provided to determine goals and constraints for the plurality of component optimization systems in accordance with economic data. In one embodiment of the invention, a multi-unit optimization system is provided to determine goals and constraints for component optimization systems of different power generating units. Both steady state and dynamic models are used for optimization.
    • 一种使用先进优化,建模和控制技术优化单个或多个发电机组的运行的方法和装置。 在一个实施例中,用于优化功率产生单元组件的多个组件优化系统被顺序地协调,以允许由第一组件优化系统确定的优化值被提前向用作后续组件优化系统的输入值。 可以提供单元优化系统以根据经济数据确定多个部件优化系统的目标和约束。 在本发明的一个实施例中,提供多单元优化系统以确定不同发电单元的部件优化系统的目标和约束。 稳态和动态模型均用于优化。
    • 49. 发明申请
    • APC PROCESS PARAMETER ESTIMATION
    • APC过程参数估计
    • US20110104015A1
    • 2011-05-05
    • US12917985
    • 2010-11-02
    • Scott A. BOYDENStephen Piche
    • Scott A. BOYDENStephen Piche
    • B01D53/48B01D53/56G06N3/02
    • G05B13/027B01D2257/302B01D2257/404G05B13/048Y10T436/12
    • A virtual analyzer is provided to estimate either an attribute of a reactant applied during performance of, or an amount of a reactant exhausted by, a process having multiple process parameters (MPPs) that is performed to control an amount of a pollutant emitted into the air. The virtual analyzer includes an interface which receives signals corresponding to attributes of the MPPs. If the process is a wet flue gas desulfurization (WFGD) process, the signals include a signal corresponding to a measured pH level of the applied reactant. If the process is a selective catalytic reduction (SCR) process, the signals include a signal corresponding to a measured amount of the reactant exhausted by the process.
    • 提供虚拟分析器以估计在执行过程中施加的反应物的属性,或由具有多个处理参数(MPP)的过程所排出的反应物的量的属性,所述过程参数(MPP)被执行以控制排放到空气中的污染物的量 。 虚拟分析器包括接收与MPP的属性对应的信号的接口。 如果该方法是湿式烟道气脱硫(WFGD)方法,信号包括对应于施加的反应物的测量的pH值的信号。 如果该方法是选择性催化还原(SCR)方法,信号包括对应于由该方法排出的反应物的测量量的信号。