会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明申请
    • HUMAN-ASSISTED TRAINING OF AUTOMATED CLASSIFIERS
    • 人工辅助自动分类培训
    • US20120158620A1
    • 2012-06-21
    • US12970158
    • 2010-12-16
    • Ulrich PaquetDavid SternJurgen Anne Francois Mari Van GaelRalf Herbrich
    • Ulrich PaquetDavid SternJurgen Anne Francois Mari Van GaelRalf Herbrich
    • G06F15/18
    • G06N99/005G06N3/08
    • Many computing scenarios involve the classification of content items within one or more categories. The content item set may be too large for humans to classify, but an automated classifier (e.g., an artificial neural network) may not be able to classify all content items with acceptable accuracy. Instead, the automated classifier may calculate a classification confidence while classifying respective content items. Content items having a low classification confidence may be sent to a human classifier, and may be added, along with the categories identified by the human classifier, to a training set. The automated classifier may then be retrained using the training set, thereby incrementally improving the classification confidence of the automated classifier while conserving the involvement of human classifiers. Additionally, human classifiers may be rewarded for classifying the content items, and the costs of such rewards may be considered while selecting content items for the training set.
    • 许多计算场景包括对一个或多个类别内的内容项进行分类。 内容项集合可能太大以致人类不能进行分类,但是自动分类器(例如,人造神经网络)可能不能够以可接受的准确度对所有内容项进行分类。 相反,自动分类器可以在分类各个内容项目时计算分类置信度。 具有低分类置信度的内容项目可以被发送到人类分类器,并且可以与人类分类器识别的类别一起被添加到训练集合中。 然后可以使用训练集再次训练自动分类器,从而逐渐改进自动分类器的分类置信度,同时节省人类分类器的参与。 此外,可以奖励人类分类器对内容项进行分类,并且可以在选择训练集的内容项时考虑这种奖励的成本。
    • 46. 发明授权
    • Bayesian scoring
    • 贝叶斯得分
    • US07376474B2
    • 2008-05-20
    • US11276184
    • 2006-02-16
    • Thore K H GraepelRalf Herbrich
    • Thore K H GraepelRalf Herbrich
    • G06F19/00
    • G06Q10/06A63B71/06G09B7/02
    • Players in a gaming environment, particularly, electronic on-line gaming environments, may be scored relative to each other or to a predetermined scoring system. The scoring of each player may be based on the outcomes of games between players who compete against each other in one or more teams of one or more players. Each player's score may be represented as a distribution over potential scores which may indicate a confidence level in the distribution representing the player's score. The score distribution for each player may be modeled with a Gaussian distribution and may be determined through a Bayesian inference algorithm. The scoring may be used to track a player's progress and/or standing within the gaming environment, used in a leaderboard indication of rank, and/or may be used to match players with each other in a future game.
    • 在游戏环境中,特别是电子在线游戏环境中的玩家可以相对于彼此或预定的评分系统进行打分。 每个玩家的得分可以基于在一个或多个玩家的一个或多个队中彼此竞争的玩家之间的游戏的结果。 每个玩家的得分可以表示为潜在分数的分布,其可以指示表示玩家得分的分布中的置信水平。 每个玩家的得分分布可以用高斯分布来建模,并且可以通过贝叶斯推理算法来确定。 评分可以用于跟踪玩家在排行榜中使用的游戏环境中的进展和/或站立,并且/或可以用于在未来的游戏中将玩家彼此匹配。
    • 47. 发明授权
    • Bayesian scoring
    • 贝叶斯得分
    • US07050868B1
    • 2006-05-23
    • US11041752
    • 2005-01-24
    • Thore K H GraepelRalf Herbrich
    • Thore K H GraepelRalf Herbrich
    • G06F19/00
    • G06Q10/06A63B71/06G09B7/02
    • Players in a gaming environment, particularly, electronic on-line gaming environments, may be scored relative to each other or to a predetermined scoring system. The scoring of each player may be based on the outcomes of games between players who compete against each other in one or more teams of one or more players. Each player's score may be represented as a distribution over potential scores which may indicate a confidence level in the distribution representing the player's score. The score distribution for each player may be modeled with a Gaussian distribution and may be determined through a Bayesian inference algorithm. The scoring may be used to track a player's progress and/or standing within the gaming environment, used in a leaderboard indication of rank, and/or may be used to match players with each other in a future game.
    • 在游戏环境中,特别是电子在线游戏环境中的玩家可以相对于彼此或预定的评分系统进行打分。 每个玩家的得分可以基于在一个或多个玩家的一个或多个队中彼此竞争的玩家之间的游戏的结果。 每个玩家的得分可以表示为潜在分数的分布,其可以指示表示玩家得分的分布中的置信水平。 每个玩家的得分分布可以用高斯分布来建模,并且可以通过贝叶斯推理算法来确定。 评分可以用于跟踪玩家在排行榜中使用的游戏环境中的进展和/或站立,并且/或可以用于在未来的游戏中将玩家彼此匹配。
    • 49. 发明申请
    • DISTRIBUTED INFORMATION SYNCHRONIZATION
    • 分布式信息同步
    • US20140059162A1
    • 2014-02-27
    • US13594685
    • 2012-08-24
    • Ralf HerbrichIouri Y. PutivskyAntoine Joseph Atallah
    • Ralf HerbrichIouri Y. PutivskyAntoine Joseph Atallah
    • G06F15/16
    • G06F17/30578
    • Processing a prepared update is disclosed. A prepared update associated with a request that has been used by the sender to update a local version of a data associated with the sender is received from a sender. Based at least in part on an identifier included in the prepared update, a selected data handler is selected among a plurality of data handlers. The selected data handler is used to update a centralized version of the data at least in part by using the received prepared update. The centralized version of the data has been previously updated using a plurality of prepared updates received from a plurality of senders. The updated centralized version of the data is sent to update the local version of the data associated with the sender.
    • 公开处理准备好的更新。 从发送方接收与发送方使用的用于更新与发送者相关联的数据的本地版本的请求相关联的准备更新。 至少部分地基于所准备的更新中包括的标识符,在多个数据处理程序中选择所选择的数据处理程序。 所选择的数据处理程序用于至少部分地通过使用所接收的准备更新来更新数据的集中版本。 已经使用从多个发送者接收的多个准备更新来更新数据的集中版本。 发送更新的集中版本的数据以更新与发送方相关联的数据的本地版本。
    • 50. 发明授权
    • Human-assisted training of automated classifiers
    • 人工辅助训练的自动分类器
    • US08589317B2
    • 2013-11-19
    • US12970158
    • 2010-12-16
    • Ulrich PaquetDavid SternJurgen Anne Francois Marie Van GaelRalf Herbrich
    • Ulrich PaquetDavid SternJurgen Anne Francois Marie Van GaelRalf Herbrich
    • G06F15/18
    • G06N99/005G06N3/08
    • Many computing scenarios involve the classification of content items within one or more categories. The content item set may be too large for humans to classify, but an automated classifier (e.g., an artificial neural network) may not be able to classify all content items with acceptable accuracy. Instead, the automated classifier may calculate a classification confidence while classifying respective content items. Content items having a low classification confidence may be sent to a human classifier, and may be added, along with the categories identified by the human classifier, to a training set. The automated classifier may then be retrained using the training set, thereby incrementally improving the classification confidence of the automated classifier while conserving the involvement of human classifiers. Additionally, human classifiers may be rewarded for classifying the content items, and the costs of such rewards may be considered while selecting content items for the training set.
    • 许多计算场景包括对一个或多个类别内的内容项进行分类。 内容项集合可能太大以致人类不能进行分类,但是自动分类器(例如,人造神经网络)可能不能够以可接受的准确度对所有内容项进行分类。 相反,自动分类器可以在分类各个内容项目时计算分类置信度。 具有低分类置信度的内容项目可以被发送到人类分类器,并且可以与人类分类器识别的类别一起被添加到训练集合中。 然后可以使用训练集再次训练自动分类器,从而逐渐改进自动分类器的分类置信度,同时节省人类分类器的参与。 此外,可以奖励人类分类器对内容项进行分类,并且可以在选择训练集的内容项时考虑这种奖励的成本。