会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明授权
    • Optical modulator including electrically controlled ring resonator
    • 光调制器包括电控环形谐振器
    • US07764850B2
    • 2010-07-27
    • US12243782
    • 2008-10-01
    • Alexandre BratkovskiTheodore I. Kamins
    • Alexandre BratkovskiTheodore I. Kamins
    • G02B6/26G02F1/025
    • G02F1/025G02F2203/055G02F2203/15
    • An optical modulator and related methods are described. In accordance with one embodiment, the optical modulator comprises a waveguide for guiding an optical signal, and further comprises a ring resonator disposed in evanescent communication with the waveguide for at least one predetermined wavelength of the optical signal. The optical modulator further comprises a semiconductor pnpn junction structure that is at least partially coextensive with at least a portion of a resonant light path of the ring resonator. The optical modulator is configured such that the semiconductor pnpn junction structure receives an electrical control signal thereacross. The electrical control signal controls a free carrier population in the resonant light path where coextensive with the pnpn junction structure. A resonance condition of the ring resonator at the predetermined wavelength is thereby controlled by the electrical control signal, and the optical signal is thereby modulated according to the electrical control signal.
    • 描述了光学调制器及相关方法。 根据一个实施例,光学调制器包括用于引导光学信号的波导,并且还包括环形谐振器,该环形谐振器设置成与光波导的至少一个预定波长的与波导的渐逝通信。 光调制器还包括半导体pnpn结结构,其至少部分地与环形谐振器的谐振光路的至少一部分共同延伸。 光调制器被配置为使得半导体pnpn结结构在其上接收电控信号。 电控制信号控制共振光路中与pnpn结结构共同延伸的自由载流子。 因此,通过电气控制信号控制环形谐振器在预定波长处的谐振状态,并且由此根据电气控制信号调制光信号。
    • 44. 发明申请
    • Optical Modulator Including Electrically Controlled Ring Resonator
    • 包括电子控制环谐振器的光学调制器
    • US20090190875A1
    • 2009-07-30
    • US12243782
    • 2008-10-01
    • Alexandre BratkovskiTheodore I. Kamins
    • Alexandre BratkovskiTheodore I. Kamins
    • G02F1/035H01L33/00
    • G02F1/025G02F2203/055G02F2203/15
    • An optical modulator and related methods are described. In accordance with one embodiment, the optical modulator comprises a waveguide for guiding an optical signal, and further comprises a ring resonator disposed in evanescent communication with the waveguide for at least one predetermined wavelength of the optical signal. The optical modulator further comprises a semiconductor pnpn junction structure that is at least partially coextensive with at least a portion of a resonant light path of the ring resonator. The optical modulator is configured such that the semiconductor pnpn junction structure receives an electrical control signal thereacross. The electrical control signal controls a free carrier population in the resonant light path where coextensive with the pnpn junction structure. A resonance condition of the ring resonator at the predetermined wavelength is thereby controlled by the electrical control signal, and the optical signal is thereby modulated according to the electrical control signal.
    • 描述了光学调制器及相关方法。 根据一个实施例,光学调制器包括用于引导光学信号的波导,并且还包括环形谐振器,该环形谐振器设置成与光波导的至少一个预定波长的与波导的渐逝通信。 光调制器还包括半导体pnpn结结构,其至少部分地与环形谐振器的谐振光路的至少一部分共同延伸。 光调制器被配置为使得半导体pnpn结结构在其上接收电控信号。 电控制信号控制共振光路中与pnpn结结构共同延伸的自由载流子。 因此,通过电气控制信号控制环形谐振器在预定波长处的谐振状态,并且由此根据电气控制信号调制光信号。
    • 45. 发明申请
    • BINARY ARRAYS OF NANOPARTICLES FOR NANO-ENHANCED RAMAN SCATTERING MOLECULAR SENSORS
    • 纳米增强纳米增强拉曼散射分子传感器的二元阵列
    • US20070252979A1
    • 2007-11-01
    • US11090352
    • 2005-03-25
    • Alexandre BratkovskiTheodore Kamins
    • Alexandre BratkovskiTheodore Kamins
    • G01J3/44G01N21/65
    • G01N21/658
    • A nano-enhanced Raman scattering (NERS)-active structure includes a substrate, a monolayer of nanoparticles disposed on a surface of the substrate, and a spacer material surrounding each nanoparticle in the monolayer of nanoparticles. The monolayer of nanoparticles includes a first plurality of nanoparticles and a second plurality of nanoparticles. The nanoparticles of the second plurality are interspersed among the first plurality and exhibit a plasmon frequency that differs from any plasmon frequency exhibited by the first plurality. Also described are a method for forming such a NERS-active structure and a NERS system that includes a NERS-active structure, an excitation radiation source, and a detector for detecting Raman scattered radiation.
    • 纳米增强拉曼散射(NERS)活性结构包括底物,设置在基底表面上的单层纳米颗粒,以及围绕纳米颗粒单层中的每个纳米颗粒的间隔物。 纳米颗粒的单层包括第一多个纳米颗粒和第二多个纳米颗粒。 第二多个纳米颗粒散布在第一多个中,并且表现出与第一多个表现出的任何等离子体频率不同的等离子体激元频率。 还描述了形成这样的NERS-活性结构的方法和包括NERS-活性结构,激发辐射源和用于检测拉曼散射辐射的检测器的NERS系统。
    • 50. 发明申请
    • Spin injection devices
    • 旋转注射装置
    • US20050026307A1
    • 2005-02-03
    • US10631999
    • 2003-07-30
    • Viatcheslav OsipovAlexandre Bratkovski
    • Viatcheslav OsipovAlexandre Bratkovski
    • G11C11/16H01L21/00H01L29/66H01L43/08
    • G11C11/16H01L29/66984H01L43/08
    • Devices such as transistors, amplifiers, frequency multipliers, and square-law detectors use injection of spin-polarized electrons from one magnetic region, into another through a control region and spin precession of injected electrons in a magnetic field induced by current in a nanowire. In one configuration, the nanowire is also one of the magnetic regions and the control region is a semiconductor region between the magnetic nanowire and the other magnetic region. Alternatively, the nanowire is insulated from the control region and the two separate magnetic regions. The relative magnetizations of the magnetic regions can be selected to achieve desired device properties. A first voltage applied between one magnetic region and the other magnetic nanowire or region causes injection of spin-polarized electrons through the control region, and a second voltage applied between the ends of the nanowire causes a current and a magnetic field that rotates electron spins to control device conductivity.
    • 诸如晶体管,放大器,倍频器和平方律检测器的器件使用从一个磁性区域将自旋极化电子注入另一个通过控制区域并且在由纳米线中的电流引起的磁场中的注入的电子的自旋进动。 在一种构造中,纳米线也是磁性区域之一,并且控制区域是磁性纳米线与另一个磁性区域之间的半导体区域。 或者,纳米线与控制区域和两个分离的磁性区域绝缘。 可以选择磁性区域的相对磁化以实现期望的器件特性。 施加在一个磁性区域和另一个磁性纳米线或区域之间的第一电压引起自旋极化电子注入到控制区域,并且施加在纳米线末端之间的第二电压引起电流和电流旋转到 控制装置电导率。