会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明授权
    • CMOS-compatible three-dimensional image sensing using reduced peak energy
    • 使用降低峰值能量的CMOS兼容三维图像感测
    • US06587186B2
    • 2003-07-01
    • US09876373
    • 2001-06-06
    • Cyrus BamjiEdoardo Charbon
    • Cyrus BamjiEdoardo Charbon
    • G01C308
    • G01S7/491G01C3/04G01S17/08G01S17/32G01S17/58G01S17/87G01S17/89
    • A three-dimensional time-of-flight (TOF) system includes a low power optical emitter whose idealized output S1=cos(&ohgr;·t) is reflected by a target distance z away as S2=A·cos(&ohgr;·t+&PHgr;), for detection by a two-dimensional array of pixel detectors and associated narrow bandwidth detector electronics and processing circuitry preferably fabricated on a common CMOS IC. Phase shift &PHgr; is proportional to TOF or z, z=&PHgr;·C/2·&ohgr;=&PHgr;·C/{2·(2·&pgr;·f)}, and A is brightness. &PHgr;, z, and A are determined by homodyne-mixing S2 with an internally generated phase-delayed version of S1, whose phase is dynamically forced to match the phase of S2 by closed-loop feedback. Idealized mixer output per each pixel detector is 0.5·A·{cos(2&ohgr;·t+&PHgr;)+cos(&PHgr;)}. On-chip circuitry can use TOE data to simultaneously measure distance, object point velocity, object contours, including user interface with virtual input devices.
    • 三维飞行时间(TOF)系统包括一个低功率光发射器,其理想输出S1 = cos(ωg.t)被目标距离z反射,因为S2 = A.cos(ωgt+ PHI ),用于通过二维阵列的像素检测器和相关联的窄带检测器电子器件和优选地制造在公共CMOS IC上的处理电路进行检测。 相移PHI与TOF或z成比例,z = PHI.C / 2.omega = PHI.C / {2.(2.pi.f)},A为亮度。 PHI,Z和A通过零差混合S2与内部产生的相位延迟版本S1来确定,其相位被动态地通过闭环反馈来匹配S2的相位。 每个像素检测器的理想混频器输出为0.5.A. {cos(2omega.t + PHI)+ cos(PHI)}。 片上电路可以使用TOE数据同时测量距离,物点速度,物体轮廓,包括与虚拟输入设备的用户界面。
    • 43. 发明授权
    • Functional timing analysis for characterization of virtual component blocks
    • 用于表征虚拟组件块的功能时序分析
    • US06457159B1
    • 2002-09-24
    • US09477710
    • 1999-12-28
    • Hakan YalcinRobert J. PalmeroKarem A. SakallahMohammad S. MortazaviCyrus Bamji
    • Hakan YalcinRobert J. PalmeroKarem A. SakallahMohammad S. MortazaviCyrus Bamji
    • G06F1750
    • G06F17/5022
    • A system and method for performing a timing analysis on virtual component blocks or other circuit models is provided wherein functional information obtained from the circuit's control inputs and their useful combinations is used to improve accuracy. The control inputs and data inputs for a circuit block are identified. Each functionally meaningful or useful control input combination is applied to the circuit block, and the topological delay for the data inputs are determined only along the paths that are not blocked by the control inputs. The delays along paths that are blocked are ignored. The analysis is further augmented by determining the topological delay for all paths originating at control inputs, without regard to blocking of paths, so as to reduce the chance for possible underestimation of delays from the data inputs. A final timing model may include the combination of maximum delays along data paths for each combination of control inputs, and maximum delays along paths originating from each of the control inputs. The delay analysis may account for different input slews and load capacitances, and the results may be expressed in tabular or matrix form. A useful technique for condensing time delay information (whether scalar or tabular in form) is also provided, to simplify timing characterization of a virtual component block or circuit model. Delay tables or matrixes that are “close” (i.e., within a specified tolerance) may be combined into a single table or matrix.
    • 提供了一种用于对虚拟组件块或其他电路模型执行定时分析的系统和方法,其中使用从电路的控制输入获得的功能信息及其有用的组合来提高精度。 识别电路块的控制输入和数据输入。 每个功能有意义或有用的控制输入组合被应用于电路块,并且数据输入的拓扑延迟仅沿着未被控制输入阻塞的路径确定。 沿阻塞路径的延迟被忽略。 通过确定源自控制输入的所有路径的拓扑延迟,而不考虑路径阻塞,进一步增加了分析,以减少可能低估数据输入延迟的可能性。 最终定时模型可以包括沿着控制输入的每个组合沿着数据路径的最大延迟的组合,以及沿着源自每个控制输入的路径的最大延迟。 延迟分析可以考虑不同的输入压摆和负载电容,结果可以以表格或矩阵形式表示。 还提供了一种用于缩短时间延迟信息(无论是标量还是表格形式)的有用技术,以简化虚拟组件块或电路模型的时序表征。 “关闭”(即,在指定的公差内)的延迟表或矩阵可以组合成单个表或矩阵。
    • 44. 发明授权
    • Single chip red, green, blue, distance (RGB-Z) sensor
    • 单芯红色,绿色,蓝色,距离(RGB-Z)传感器
    • US08139141B2
    • 2012-03-20
    • US11044996
    • 2005-01-26
    • Cyrus BamjiPeiqian Zhao
    • Cyrus BamjiPeiqian Zhao
    • G03B13/00H04N9/07H04N5/225H04N13/02G01C3/08
    • H04N9/045G01C3/08G01J3/2803G01J3/36G01S7/4811G01S7/4863G01S7/4912G01S17/023G01S17/89G01S17/936H04N5/2226H04N5/2254H04N5/332H04N9/083
    • An RGB-Z sensor is implementable on a single IC chip. A beam splitter such as a hot mirror receives and separates incoming first and second spectral band optical energy from a target object into preferably RGB image components and preferably NIR Z components. The RGB image and Z components are detected by respective RGB and NIR pixel detector array regions, which output respective image data and Z data. The pixel size and array resolutions of these regions need not be equal, and both array regions may be formed on a common IC chip. A display using the image data can be augmented with Z data to help recognize a target object. The resultant structure combines optical efficiency of beam splitting with the simplicity of a single IC chip implementation. A method of using the single chip red, green, blue, distance (RGB-Z) sensor is also disclosed.
    • RGB-Z传感器可在单个IC芯片上实现。 诸如热反射镜的分束器接收并将来自目标物体的进入的第一和第二光谱带光能分解成优选的RGB图像分量,并且优选地将NIR Z分量分离。 RGB图像和Z分量由相应的RGB和NIR像素检测器阵列区域检测,其输出相应的图像数据和Z数据。 这些区域的像素尺寸和阵列分辨率不必相等,并且两个阵列区域可以形成在公共IC芯片上。 使用图像数据的显示可以用Z数据来增强以帮助识别目标对象。 所得到的结构结合了光束分离的光学效率和单个IC芯片实现的简单性。 还公开了使用单芯片红,绿,蓝,距离(RGB-Z)传感器的方法。
    • 45. 发明申请
    • Method and system for intelligently mining data during communication streams to present context-sensitive advertisements using background substitution
    • 用于在通信流期间智能挖掘数据以使用背景替换来呈现上下文敏感广告的方法和系统
    • US20120011454A1
    • 2012-01-12
    • US12387438
    • 2009-04-30
    • Timothy DrozSunil AcharyaCyrus Bamji
    • Timothy DrozSunil AcharyaCyrus Bamji
    • G06F3/00
    • H04L12/1827G06Q30/0241G06Q30/0251
    • The present invention mines or extracts data present during interaction between at least two participants, for example in a chat session, a video session, etc. via the Internet. The data, which can include participant web camera generated video, audio, keyboard typed information, handwriting recognized information, is analyzed. Based upon the analysis, content-dependent information is determined and may be displayed to one or more participants in the chat session. In one aspect, a video foreground based upon a participant's generated video is combined with a customized computer generated background that is based upon data mined from the chat session. The customized background preferably is melded seamlessly with the participant's foreground data, preferably via background substitution that combines RGB video with depth data that predicts what background may substituted with new imagery. Content-based targeted information can include advertisement(s).
    • 本发明例如在通过因特网的聊天会话,视频会话等中,在至少两个参与者之间的交互期间挖掘或提取存在的数据。 分析了可以包括参与者网络摄像机产生的视频,音频,键盘类型信息,手写识别信息的数据。 基于分析,确定内容相关信息并且可以向聊天会话中的一个或多个参与者显示。 在一个方面,基于参与者生成的视频的视频前景与基于从聊天会话中挖掘的数据的定制的计算机生成的背景组合。 优选地,定制背景与参与者的前景数据无缝地融合,优选地通过将RGB视频与预测可以用新图像替代的背景的深度数据组合的背景替换。 基于内容的目标信息可以包括广告。
    • 46. 发明申请
    • System architecture design for time-of- flight system having reduced differential pixel size, and time-of- flight systems so designed
    • 具有降低差分像素尺寸的飞行时间系统的系统架构设计,以及如此设计的飞行时间系统
    • US20110304841A1
    • 2011-12-15
    • US12459160
    • 2009-06-26
    • Cyrus BamjiSwati Mehta
    • Cyrus BamjiSwati Mehta
    • G01C3/08
    • G01S7/491G01C3/08G01S7/4914G01S17/36G01S17/89
    • Embodiments of the present invention provide methods to produce a high performance, feature rich TOF system, phase-based or otherwise using small TOF pixels, single-ended or preferably differential, as well as TOF systems so designed. IC chip area required for pixels is reduced by intelligently off-loading or removing from within the pixel certain components and/or functionality. In some embodiments during a single TOF system capture period, analog values from each pixel are repeatedly sampled and converted to digital values, which are combined and manipulated on the sensor chip. Combining this plurality of values enables appropriately compact data from the sensor chip. Embodiments of the present invention implement a TOF system with high ambient light resilience, high dynamic range, low motion blur and dealiasing support, while advantageously reducing pixel area size relative to prior art TOF pixels.
    • 本发明的实施例提供了产生高性能,特征丰富的TOF系统,基于相位或以其他方式使用小型TOF像素,单端或优选差分以及如此设计的TOF系统的方法。 通过智能地卸载或从像素内部去除某些部件和/或功能来减少像素所需的IC芯片面积。 在一些实施例中,在单个TOF系统捕获周期期间,来自每个像素的模拟值被重复采样并转换成在传感器芯片上组合和操作的数字值。 结合该多个值可以实现来自传感器芯片的适当紧凑的数据。 本发明的实施例实现了具有高环境光弹性,高动态范围,低运动模糊和去混合支持的TOF系统,同时有利地减小了相对于现有技术的TOF像素的像素面积尺寸。
    • 47. 发明申请
    • MULTIPLE SYNCHRONIZED OPTICAL SOURCES FOR TIME-OF-FLIGHT RANGE FINDING SYSTEMS
    • 用于飞行时间范围发现系统的多个同步光源
    • US20110188027A1
    • 2011-08-04
    • US13018293
    • 2011-01-31
    • Cyrus Bamji
    • Cyrus Bamji
    • G01C3/08
    • G01C3/08G01S7/4815G01S7/4911G01S17/36G01S17/89
    • TOF system optical power is augmented using auxiliary optical emitter unit(s) that may be a wireless (WOE), or a plug-wired (PWOE). WOE units sense emitted TOF system optical energy Sout and emit optical energy Sout-n preferably dynamically synchronized in frequency and in phase to Sout as received by the WOE. Each WOE includes at least one optical sensor to detect Sout, and internal feedback ensuring that frequency and phase of the WOE emitted Sout-n optical energy are dynamically synchronized with frequency and phase of the TOF emitted Sout optical energy. PWOE units need no internal feedback but are calibrated by the TOF system to cause a close match between frequency and phase of the PWOE-emitted optical energy with what would be emitted by the TOF system primary optical source. If PWOE(s) are used in isolation, delay difference between PWOE and the TOF primary optical energy source can be software-compensated.
    • 使用可能是无线(WOE)或插头式(PWOE)的辅助光发射器单元来扩充TOF系统光功率。 WOE单元感测发射的TOF系统光能Sout并发射光能Sout-n优选地在频率和相位上动态地同步到由WOE接收的Sout。 每个WOE包括至少一个用于检测Sout的光学传感器和内部反馈,确保WOE发射的Sout-n光能的频率和相位与TOF发射的Sout光能的频率和相位动态同步。 PWOE单元不需要内部反馈,但是由TOF系统校准,以使PWOE发射的光能的频率和相位与TOF系统主光源发射的频率和相位紧密匹配。 如果PWOE被隔离使用,PWOE和TOF主光能源之间的延迟差可以进行软件补偿。
    • 48. 发明授权
    • Method and system for lossless dealiasing in time-of-flight (TOF) systems
    • 飞行时间(TOF)系统中无损去空的方法和系统
    • US07791715B1
    • 2010-09-07
    • US11906609
    • 2007-10-02
    • Cyrus Bamji
    • Cyrus Bamji
    • G01C3/08
    • G01C3/08G01S7/481G01S7/491G01S17/36G01S17/89
    • Time-of-flight (TOF) phase-derived data is dealiased by operating the TOF system using at least two close-together modulation frequencies f1 and f2 that are close to the TOF system maximum modulation frequency fm. On one hand, phase data acquired by the TOF is associated with a desirably long aliasing interval range ZAIR normally associated with a rather low modulation frequency. On the other hand, phase data acquired by the TOF system is also associated with the high precision certainty as to Z value normally associated with high modulation frequency. Preferably the TOF system operates always close to fm such that TOF operating efficiency is high, and system signal/noise ratio is not substantially degraded using the present invention.
    • 通过使用接近TOF系统最大调制频率fm的至少两个相近的调制频率f1和f2操作TOF系统来对飞行时间(TOF)相位导出的数据进行解码。 一方面,由TOF获取的相位数据与通常与相当低的调制频率相关联的期望的长的混叠间隔范围ZAIR相关联。 另一方面,由TOF系统获取的相位数据也与通常与高调制频率相关联的Z值的高精度确定性相关联。 优选地,TOF系统始终接近于fm,使得TOF操作效率高,并且使用本发明基本上不降低系统信号/噪声比。
    • 49. 发明授权
    • Method and system for fast calibration of three-dimensional (3D) sensors
    • 三维(3D)传感器快速校准的方法和系统
    • US07719662B2
    • 2010-05-18
    • US12319086
    • 2008-12-30
    • Cyrus BamjiHakan Yalcin
    • Cyrus BamjiHakan Yalcin
    • G01C3/08
    • G01C3/08G01C25/00G01S7/497G01S17/36G01S17/89
    • Rapid calibration of a TOF system uses a stationary target object and electrically introduces phase shift into the TOF system to emulate target object relocation. Relatively few parameters suffice to model a parameterized mathematical representation of the transfer function between measured phase and Z distance. The phase-vs-distance model is directly evaluated during actual run-time operation of the TOF system. Preferably modeling includes two components: electrical modeling of phase-vs-distance characteristics that depend upon electrical rather than geometric characteristics of the sensing system, and elliptical modeling that phase-vs-distance characteristics that depending upon geometric rather than electrical characteristics of the sensing system.
    • TOF系统的快速校准使用固定的目标物体,并将相移电相引入到TOF系统中以模拟目标物体重定位。 相对较少的参数足以对测量相位和Z距离之间的传递函数进行参数化数学表示。 在TOF系统的实际运行时间期间直接评估相位对距离模型。 建模模型最好包括两个部分:取决于传感系统的电而不是几何特性的相位 - 距离特性的电气建模,以及取决于传感系统的几何而不是电特性的相位 - 距离特性的椭圆建模 。
    • 50. 发明授权
    • Transistor-level timing analysis using embedded simulation
    • 使用嵌入式仿真的晶体管级定时分析
    • US07647220B2
    • 2010-01-12
    • US10042512
    • 2001-10-18
    • Pawan KulshreshthaRobert J. PalermoMohammad MortazaviCyrus BamjiHakan Yalcin
    • Pawan KulshreshthaRobert J. PalermoMohammad MortazaviCyrus BamjiHakan Yalcin
    • G06F17/50
    • G06F17/5022
    • A high accuracy method for transistor-level static timing analysis is disclosed. Accurate static timing verification requires that individual gate and interconnect delays be accurately calculated. At the sub-micron level, calculating gate and interconnect delays using delay models can result in reduced accuracy. Instead, the proposed method calculates delays through numerical integration using an embedded circuit simulator. It takes into account short circuit current and carefully chooses the set of conditions that results in a tight upper bound of the worst case delay for each gate. Similar repeating transistor configurations of gates in the circuit are automatically identified and a novel interpolation based caching scheme quickly computes gate delays from the delays of similar gates. A tight object code level integration with a commercial high speed transistor-level circuit simulator allows efficient invocation of the simulation.
    • 公开了一种用于晶体管级静态时序分析的高精度方法。 精确的静态定时验证要求精确计算各个门和互连延迟。 在亚微米级,使用延迟模型计算门和互连延迟可能导致精度降低。 相反,所提出的方法通过使用嵌入式电路模拟器的数值积分来计算延迟。 考虑到短路电流,并仔细选择导致每个门极差延迟严格上限的一组条件。 自动识别电路中相似的重复晶体管配置,并且一种新颖的基于插值的缓存方案可以从相似门的延迟中快速计算门延迟。 与商用高速晶体管级电路仿真器紧密的目标代码级集成可以有效地调用仿真。