会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明授权
    • Robot apparatus and method of controlling the same, and computer program
    • 机器人装置及其控制方法以及计算机程序
    • US08322468B2
    • 2012-12-04
    • US12698550
    • 2010-02-02
    • Kenichiro Nagasaka
    • Kenichiro Nagasaka
    • B62D57/00
    • B25J5/007
    • In a robot apparatus having a base unit, a wheel unit of an opposed-two-wheel type mounted on the base unit and having driving wheels drivable so as to face each other, and an upper-body unit provided on an upper portion of the base unit and configured by concatenating one or more joints; a robot apparatus includes an opposed-two-wheel equivalent model, a robot-state observing unit, a control unit performing a control arithmetic operation for the opposed-two-wheel equivalent model, a transforming unit transforming a part of control target values calculated by the control unit to a control target value for the wheel unit, and a joint control unit controlling a joint-driving actuator of the wheel unit and also controlling a joint-driving actuator other than the joint-driving actuator.
    • 在具有基座单元的机器人装置中,安装在基座上的相对的两轮式车轮单元,具有能够彼此相对驱动的驱动轮,以及设置在所述基座单元的上部的上部单元 基本单元并通过连接一个或多个接头来配置; 机器人装置包括相对的两轮等效模型,机器人状态观察单元,对相对的两轮当量模型进行控制算术运算的控制单元,变换由 所述控制单元为所述车轮单元的控制目标值,以及关节控制单元,其控制所述车轮单元的关节驱动致动器,并且还控制所述关节驱动致动器以外的关节驱动致动器。
    • 43. 发明申请
    • TORQUE SENSOR AND ROBOT APPARATUS
    • 扭矩传感器和机器人设备
    • US20110239788A1
    • 2011-10-06
    • US13027791
    • 2011-02-15
    • Kenichiro NAGASAKAYasunori KAWANAMI
    • Kenichiro NAGASAKAYasunori KAWANAMI
    • G01L3/14B25J19/02
    • B25J13/085G01L3/1457
    • Provided is a torque sensor including a first rotating body, a second rotating body, a strain body, and a detection element. The first rotating body is rotatable around an input shaft. The second rotating body is rotatable around an output shaft. The strain body includes a first engaging portion. The first engaging portion is separated from at least one of the rotating bodies in a first direction parallel to the input shaft, a second direction perpendicular to the first direction, and a third direction around the input shaft and is capable of engaging to the at least one of the rotating bodies in the third direction. The strain body transmits a rotational torque to the third direction between the first rotating body and the second rotating body. The detection element is provided to the strain body to measure a strain of the strain body due to the rotational torque.
    • 提供一种扭矩传感器,包括第一旋转体,第二旋转体,应变体和检测元件。 第一旋转体可绕输入轴旋转。 第二旋转体可绕输出轴旋转。 应变体包括第一接合部分。 第一接合部分在与输入轴平行的第一方向上与至少一个旋转体分离,与第一方向垂直的第二方向,以及围绕输入轴的第三方向,并且能够至少接合至少 其中一个旋转体在第三个方向。 应变体在第一旋转体和第二旋转体之间向第三方向传递旋转力矩。 检测元件设置在应变体上,由于旋转转矩而测量应变体的应变。
    • 44. 发明申请
    • GRASPING APPARATUS
    • 砂光机
    • US20110156416A1
    • 2011-06-30
    • US12899025
    • 2010-10-06
    • Yasunori KawanamiAkichika TanakaKenichiro NagasakaMasakuni Nagano
    • Yasunori KawanamiAkichika TanakaKenichiro NagasakaMasakuni Nagano
    • B25J15/08
    • B25J15/0213
    • A grasping apparatus includes a base unit, left and right parallel links, and a driving unit that is housed in the base unit and drives the first link of the right parallel link and the first link of the left parallel link in the open/close direction. Each of the left and right parallel links has a first link attached pivotably in an open/close direction about a base shaft of the base unit, a second link attached pivotably in the open/close direction about an auxiliary shaft located on an outer side in the open/close direction, a finger unit supported pivotably at an end of the first link and an end of the second link, and a claw projecting toward the inner side in the open/close direction and disposed along an end face of the grasping surface of the finger unit of each of the left and right parallel links.
    • 夹持装置包括基座单元,左右平行连杆和驱动单元,该驱动单元容纳在基座单元中,并且驱动左右平行连杆的第一连杆和左平行连杆的第一连杆沿开闭方向 。 左右平行连杆中的每一个具有围绕基座单元的基轴以开闭方式可枢转地附接的第一连杆,第二连杆以围绕位于外侧的辅助轴的打开/关闭方向可枢转地附接 打开/关闭方向,可旋转地支撑在第一连杆的端部和第二连杆的端部处的手指单元,以及沿着打开/关闭方向朝向内侧突出的爪,沿着抓握表面的端面设置 的左右平行链接中的每一个的手指单元。
    • 45. 发明申请
    • INFORMATION INPUT/OUTPUT DEVICE, INFORMATION INPUT/OUTPUT METHOD AND COMPUTER PROGRAM
    • 信息输入/输出设备,信息输入/输出方法和计算机程序
    • US20090282331A1
    • 2009-11-12
    • US12436222
    • 2009-05-06
    • Kenichiro NAGASAKA
    • Kenichiro NAGASAKA
    • G06F3/01
    • G06F3/014G06F3/016G06F3/0346G06F3/0481G06F3/04815
    • An information input/output device includes: a position input unit configured to designate a position by a user in a prescribed operation area Sd in real space; a designated position measurement unit configured to measure a designated position “rd” in the operation area Sd, which is designated by the user in the position input unit; an operation area offset amount determination unit configured to determine an offset amount “Δrv0” of an origin position “rv0” of an operation area Sv in virtual space based on the measured position “rd” in the operation area Sd; and a designated position determination unit configured to determine a designated position “rv” in virtual space which corresponds to the position in real space designated by the user through the position input unit based on the measured position “rd” in the operation area Sd, the origin position “rv0” of the operation area Sv in virtual space and the determined offset amount “Δrv0”.
    • 信息输入/输出装置包括:位置输入单元,被配置为在实际空间中指定用户在规定操作区域Sd中的位置; 指定位置测量单元,被配置为测量在位置输入单元中由用户指定的操作区域Sd中的指定位置“rd”; 操作区域偏移量确定单元,被配置为基于操作区域Sd中的测量位置“rd”确定虚拟空间中的操作区域Sv的原点位置“rv0”的偏移量“Deltarv0” 以及指定位置确定单元,被配置为基于操作区域Sd中的测量位置“rd”,通过位置输入单元确定与用户指定的实际空间中的位置相对应的虚拟空间中的指定位置“rv”, 虚拟空间中的操作区域Sv的起始位置“rv0”和确定的偏移量“Deltarv0”。
    • 46. 发明申请
    • Actuator Control Device, Actuator Control Method, Actuator, Robot Apparatus, and Computer Program
    • 执行器控制装置,执行器控制方法,执行器,机器人装置和计算机程序
    • US20090272585A1
    • 2009-11-05
    • US12432292
    • 2009-04-29
    • Kenichiro NAGASAKA
    • Kenichiro NAGASAKA
    • B25J9/02B25J17/00B25J18/00G05B19/04B62D57/032G06F19/00
    • B25J9/1633G05B2219/39319G05B2219/39355Y10T74/20317
    • There is provided an actuator control device for force-controlling a joint driving actuator according to a commanded joint force command value τa. The actuator control device includes a joint value detecting means for detecting a joint value q at an output stage of the actuator, an action force detecting means for detecting an action force τe in a joint driving direction at the output stage of the actuator, and a driving force determining means for determining an instructed driving force τ to the actuator, on the basis of an ideal response model of the actuator which specifies the relationship of a joint value acceleration target value achieved as the actuator responds ideally when the joint force command value τa, the action force τe, and a joint value velocity obtained by time-differentiating the joint value q are given.
    • 提供了一种致动器控制装置,用于根据命令的联合力指令值τα来对关节驱动致动器进行力控制。 致动器控制装置包括用于在致动器的输出级检测接合值q的接合值检测装置,用于检测在致动器的输出级的接合行进方向上的作用力的动作力的作用力检测装置,以及 驱动力确定装置,用于基于执行器的理想响应模型确定指令的驱动力τ,该致动器指定作为致动器实现的联合值加速度目标值的关系,当联合力指令值τα 给出了动作力taue以及通过对联合值q进行时间差分获得的联合值的速度。
    • 47. 发明授权
    • Robot device, motion control device for robot device and motion control method
    • 机器人装置,机器人装置运动控制装置及运动控制方法
    • US07400939B2
    • 2008-07-15
    • US10500372
    • 2003-10-29
    • Kenichiro Nagasaka
    • Kenichiro Nagasaka
    • G06F19/00
    • B62D57/032
    • A motion equation with a boundary condition regarding a future center-of-gravity horizontal trajectory of a robot is solved so that the moment around a horizontal axis at a point within a support polygon is zero when the robot is in contact with a floor or so that horizontal translational force is zero when the robot is not in contact with the floor and so that connection is made to a current horizontal position and speed of the center of gravity. In addition, a motion equation with a boundary condition regarding a future center-of-gravity vertical trajectory of the robot is solved so that vertical translational force acting upon the robot other than gravity is zero when the robot is not in contact with the floor and so that connection is made to a current vertical position and speed of the center of gravity. A motion state of a next time is determined so that, when the robot is not in contact with the floor, the moment around the center of gravity is zero, and the determined center-of-gravity position is achieved. Therefore, a stable motion pattern which allows transition between a floor contact period and a floor non-contact period is generated in real time.
    • 解决了关于机器人的未来重心水平轨迹的边界条件的运动方程,使得当机器人与地面等接触时,支撑多边形内的点处的水平轴周围的力矩为零 当机器人不与地板接触时,水平平移力为零,并且使得连接成当前的水平位置和重心的速度。 此外,解决了关于机器人的未来重心垂直轨迹的边界条件的运动方程,使得当机器人不与地面接触时作用于机器人而不是重力的垂直平移力为零; 使得连接到当前的垂直位置和重心的速度。 确定下一次的运动状态,使得当机器人不与地板接触时,重心周围的力矩为零,并且确定了确定的重心位置。 因此,能够实时地生成能够在地板接触时间段和地板非接触时间段之间进行转换的稳定运动模式。
    • 50. 发明申请
    • Robot device and control method of robot device
    • 机器人装置及其控制方法
    • US20050107916A1
    • 2005-05-19
    • US10497096
    • 2003-09-30
    • Kenichiro Nagasaka
    • Kenichiro Nagasaka
    • B62D57/02B62D57/032G06F19/00
    • B62D57/032B62D57/02
    • A locomotion control system is constructed to input the quantity of materials in the real world, such as the quantity of motion state of a robot, external force and external moment, and environmental shapes, measured with sensors or the like. By integrating all calculations for maintaining a balance of the body into a single walking-pattern calculating operation, both a locomotion generating function and an adaptive control function are effectively served, the consistency of dynamic models is ensured, and interference between the dynamic models is eliminated. Calculations for generating a walking pattern of the robot can be performed in an actual apparatus and in real time in a manner in which parameters, such as a boundary condition concerning the quantity of motion state, external force and external moment, and the trajectory of the sole, are settable.
    • 构成运动控制系统,以输入现实世界中的材料的数量,例如机器人的运动状态量,外力和外力矩以及用传感器等测量的环境形状。 通过将所有保持身体平衡的计算整合为单一的步行模式计算操作,有效地实现了运动产生功能和自适应控制功能,确保了动态模型的一致性,消除了动态模型之间的干扰 。 用于生成机器人的行走模式的计算可以在实际装置中以实时方式执行,其中参数例如涉及运动状态量,外力和外力矩的边界条件以及轨迹 唯一的,可以设定。