会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明申请
    • PATCH DESCRIPTION AND MODELING FOR IMAGE SUBSCENE RECOGNITION
    • 图像描述和图像识别的建模
    • US20120155766A1
    • 2012-06-21
    • US12972162
    • 2010-12-17
    • Ximin ZhangMing-Chang Liu
    • Ximin ZhangMing-Chang Liu
    • G06K9/34G06K9/62
    • G06K9/00664G06F17/30256G06K9/4676
    • A method and apparatus is described that categorizes images by extracting regions and describing the regions with a set of 15-dimensional image patch feature vectors, which are concatenations of color and texture feature vectors. By comparing the image patch feature vectors in images with similarly-obtained image patch vectors in a Gaussian mixture based model pool (obtained in an image patch modeling phase), the images may be categorized (in an image patch recognition phase) with probabilities relating to each image patch. Higher probabilities are likelier correlations. The device may be a single or multiple core CPU, or parallelized vector processor for characterizing many images. The images may be photographs, videos, or video stills, without restriction. When used real-time, the method may be used for visual searching or sorting.
    • 描述了一种方法和装置,其通过提取区域并且用一组15维图像贴片特征向量来描述图像,该图像斑块特征向量是颜色和纹理特征向量的连接。 通过将图像中的图像块特征向量与基于高斯混合的模型池(在图像块建模阶段中获得)中的类似获得的图像块向量进行比较,可以将图像分类(在图像块识别阶段中),其概率与 每个图像补丁。 更高的概率是可能的相关性。 该设备可以是用于表征许多图像的单个或多个核心CPU或并行化矢量处理器。 图像可以是照片,视频或视频静止图像,没有限制。 当实时使用时,该方法可用于视觉搜索或排序。
    • 32. 发明申请
    • COLOR AND INTENSITY BASED MEANINGFUL OBJECT OF INTEREST DETECTION
    • 基于颜色和强度的意义敏感的目标检测
    • US20110222778A1
    • 2011-09-15
    • US12723438
    • 2010-03-12
    • Ximin ZhangMing-Chang Liu
    • Ximin ZhangMing-Chang Liu
    • G06K9/46
    • G06K9/00664G06K9/3241
    • An apparatus and method for detecting “Object Portraits” (photographs or images with a stand-out object of interest or a set of stand-out objects of interest) is described. A set of tools has been developed for object of interest detection, including “Sunset-like” scene detection, pseudo-color saturation-based detection and object of interest isolation, block intensity based detection and object of interest isolation. By effectively integrating these tools together, the “Object Portrait” images and “Non-Object Portrait” images are successfully identified. Meaningful object of interest areas are thereby successfully isolated in a low complexity manner without human intervention.
    • 描述了用于检测“对象肖像”(具有引人注目的对象的感兴趣的对象或一组待排除的对象的照片或图像)的装置和方法。 已经开发了一套工具,用于感兴趣的检测对象,包括“日落样”场景检测,基于伪彩色饱和的检测和感兴趣的对象隔离,基于块强度的检测和感兴趣的对象隔离。 通过有效地将这些工具集成在一起,“对象人像”图像和“非对象肖像”图像被成功识别。 因此,有意义的利益领域的对象在没有人为干预的情况下以低复杂度方式被成功隔离。
    • 34. 发明申请
    • Picture mode selection for video transcoding
    • 视频转码的图像模式选择
    • US20090180532A1
    • 2009-07-16
    • US12009054
    • 2008-01-15
    • Ximin ZhangMing-Chang Liu
    • Ximin ZhangMing-Chang Liu
    • H04B1/66
    • H04N19/103H04N19/139H04N19/14H04N19/16H04N19/176H04N19/40H04N19/61
    • An adaptive picture mode selection transcoder selects an encoding mode in a second format for frames of video previously encoded in a first format by determining a magnitude of interlacing phenomenon in the using picture information obtained during decoding of the video from the first format. In one aspect, the picture information includes discrete cosine coefficients for macroblocks in the frame. In another aspect, the picture information includes an encoding mode for the macroblocks in the first format. In yet another aspect, the picture information includes motion vector information for the macroblocks. In still another aspect, the determining is specific to an encoding mode for the frame.
    • 自适应图像模式选择代码转换器通过确定在从第一格式的视频解码期间获得的使用图像信息中的交织现象的大小来选择第二格式的用于以第一格式预编码的视频帧的编码模式。 在一个方面,图像信息包括用于该帧中的宏块的离散余弦系数。 在另一方面,图像信息包括用于第一格式的宏块的编码模式。 在另一方面,图像信息包括用于宏块的运动矢量信息。 在另一方面,该确定特定于该帧的编码模式。
    • 40. 发明授权
    • Shape description and modeling for image subscene recognition
    • 形象描述和建模图像子叶识别
    • US08503768B2
    • 2013-08-06
    • US12975950
    • 2010-12-22
    • Ximin ZhangMing-Chang Liu
    • Ximin ZhangMing-Chang Liu
    • G06K9/62
    • G06K9/00684G06K9/4642G06K9/4676G06K9/48
    • A method and apparatus is described here that categorizes images by extracting a subscene and describing the subscene with a top level feature vector and a division feature vector, which are descriptions of edge gradient classifications within rectangular bounding boxes. By filtering subscene feature vectors in images with a Gaussian mixture based model pool (obtained in a subscene modeling phase), the images may be categorized (in an subscene recognition phase) with probabilities relating to each subscene. Higher probabilities are likelier correlations. The device may be a single or multiple core CPU, or parallelized vector processor for characterizing many images. The images may be photographs, videos, or video stills, without restriction. When used real-time, the method may be used for visual searching or sorting.
    • 这里描述了一种方法和装置,其通过提取一个子序列并用顶层特征向量和分割特征向量来描述该次序,从而对图像进行分类,这是在矩形边界框内的边缘梯度分类的描述。 通过使用基于高斯混合的模型池(在亚视觉建模阶段获得),在图像中过滤子图像特征向量,可以将图像分类(在子序列识别阶段),其具有与每个亚素相关的概率。 更高的概率是可能的相关性。 该设备可以是用于表征许多图像的单个或多个核心CPU或并行化矢量处理器。 图像可以是照片,视频或视频静止图像,没有限制。 当实时使用时,该方法可用于视觉搜索或排序。