会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明授权
    • Dual imaging acquisition using common time-base frequency
    • 使用公共时基频率的双重成像采集
    • US09134392B2
    • 2015-09-15
    • US12902185
    • 2010-10-12
    • James Frank CarubaRalf LadebeckRalph OppeltPatanit Sanpitak
    • James Frank CarubaRalf LadebeckRalph OppeltPatanit Sanpitak
    • A61B6/00G01R33/48
    • G01R33/481
    • Timing in a medical imaging system. The system comprises a magnetic resonance imaging (MRI) subsystem and a non-MRI subsystem. Operation of the non-MRI subsystem involves a timing signal within a radio frequency (RF) cabin of the MRI subsystem. Basing each non-MRI subsystem timing signal on a time base common between the MRI subsystem and the non-MRI subsystem. The non-MRI subsystem can be a medical imaging subsystem. The non-MRI medical imaging subsystem can be a positron emission tomography (PET) subsystem. Each non-MRI subsystem timing signal that based on the common time base can be created using the same model of equipment used for creating timing signals in the MRI subsystem. At least one stage of the non-MRI subsystem timing signal based on the common time base can be created using the same equipment used for creating timing signals in the MRI subsystem.
    • 医学影像系统的时间安排 该系统包括磁共振成像(MRI)子系统和非MRI子系统。 非MRI子系统的操作涉及MRI子系统的射频(RF)舱内的定时信号。 在MRI子系统和非MRI子系统之间共同的时基上,按照每个非MRI子系统定时信号。 非MRI子系统可以是医学成像子系统。 非MRI医学成像子系统可以是正电子发射断层摄影(PET)子系统。 可以使用与用于在MRI子系统中创建定时信号相同的设备模型来创建基于公共时基的每个非MRI子系统定时信号。 可以使用用于在MRI子系统中创建定时信号的相同设备来创建基于公共时基的非MRI子系统定时信号的至少一个阶段。
    • 33. 发明授权
    • Collimator storage apparatus integrated with patient support
    • 与患者支架集成的准直器存储装置
    • US08173966B2
    • 2012-05-08
    • US11165964
    • 2005-06-24
    • James Frank Caruba
    • James Frank Caruba
    • A47B23/00
    • G01T1/1648A61B6/4258
    • According to some embodiments, a patient support system for a nuclear medical imaging system is provided that includes: a patient support; a collimator storage unit located under the patient support; a first support means for supporting substantially all of the weight of the collimator storage unit; and a second support means for supporting the patient support at least at a position distal from a gantry of the nuclear medical imaging system. In some embodiments, the first support means includes means for supporting the patient support at a position proximate a gantry of the nuclear medical imaging system and the second support means includes two vertical support structures. In addition, the system preferably includes at least one laterally extendable frame member mounted between the two vertical support structures.
    • 根据一些实施例,提供了一种用于核医学成像系统的患者支撑系统,其包括:患者支架; 位于患者支架下方的准直器存放单元; 用于支撑准直器存储单元的基本上所有重量的第一支撑装置; 以及用于至少在远离核医学成像系统的机架的位置处支撑患者支架的第二支撑装置。 在一些实施例中,第一支撑装置包括用于在靠近核医学成像系统的台架的位置处支撑患者支架的装置,并且第二支撑装置包括两个垂直支撑结构。 此外,该系统优选地包括安装在两个垂直支撑结构之间的至少一个可横向延伸的框架构件。
    • 34. 发明申请
    • Dual Imaging Acquisition Using Common Time-Base Frequency
    • 使用公共时基频率的双重成像采集
    • US20120089007A1
    • 2012-04-12
    • US12902185
    • 2010-10-12
    • James Frank CarubaRalf LadebeckRalph OppeltPatanit Sanpitak
    • James Frank CarubaRalf LadebeckRalph OppeltPatanit Sanpitak
    • A61B5/055
    • G01R33/481
    • Timing in a medical imaging system. The system comprises a magnetic resonance imaging (MRI) subsystem and a non-MRI subsystem. Operation of the non-MRI subsystem involves a timing signal within a radio frequency (RF) cabin of the MRI subsystem. Basing each non-MRI subsystem timing signal on a time base common between the MRI subsystem and the non-MRI subsystem. The non-MRI subsystem can be a medical imaging subsystem. The non-MRI medical imaging subsystem can be a positron emission tomography (PET) subsystem. Each non-MRI subsystem timing signal that based on the common time base can be created using the same model of equipment used for creating timing signals in the MRI subsystem. At least one stage of the non-MRI subsystem timing signal based on the common time base can be created using the same equipment used for creating timing signals in the MRI subsystem.
    • 医学影像系统的时间安排 该系统包括磁共振成像(MRI)子系统和非MRI子系统。 非MRI子系统的操作涉及MRI子系统的射频(RF)舱内的定时信号。 在MRI子系统和非MRI子系统之间共同的时基上,按照每个非MRI子系统定时信号。 非MRI子系统可以是医学成像子系统。 非MRI医学成像子系统可以是正电子发射断层摄影(PET)子系统。 可以使用与用于在MRI子系统中创建定时信号相同的设备模型来创建基于公共时基的每个非MRI子系统定时信号。 可以使用用于在MRI子系统中创建定时信号的相同设备来创建基于公共时基的非MRI子系统定时信号的至少一个阶段。
    • 37. 发明申请
    • MR-PET Imaging System Integration
    • MR-PET成像系统集成
    • US20120018644A1
    • 2012-01-26
    • US13186962
    • 2011-07-20
    • James Frank Caruba
    • James Frank Caruba
    • G01T1/164G01R33/36
    • G01R33/28A61B5/055A61B6/037A61B6/5235G01R33/481Y10T307/305
    • A data processing unit for an integrated magnetic resonance (MR) and positron emission tomography (PET) system includes an RF shield housing, a first input port in the RF shield housing configured to receive a PET detector signal, a first filter disposed in the RF shield housing, in communication with the first input port, and configured to remove MR noise from the PET detector signal, a second input port in the RF shield housing configured to receive DC power, a second filter disposed in the RF shield housing, in communication with the second input port, and configured to remove the MR noise from the DC power, and a signal processing circuit disposed in the RF shield housing and powered by the DC power, the signal processing circuit including an analog-to-digital converter to digitize the PET detector signal.
    • 用于集成磁共振(MR)和正电子发射断层摄影(PET)系统的数据处理单元包括RF屏蔽壳体,RF屏蔽壳体中的第一输入端口,被配置为接收PET检测器信号,第一滤波器设置在RF 屏蔽壳体,与第一输入端口通信,并且被配置为从PET检测器信号去除MR噪声,RF屏蔽壳体中被配置为接收DC电力的第二输入端口,布置在RF屏蔽壳体中的第二滤波器,在通信中 具有第二输入端口,并被配置为从DC电力中去除MR噪声,以及信号处理电路,其布置在RF屏蔽壳体中并由DC电力供电,所述信号处理电路包括模数转换器以数字化 PET检测器信号。
    • 39. 发明授权
    • Burst-mode readout for solid state radiation detectors using partitioned pipeline architecture
    • 使用分区管道架构的固态辐射探测器的突发模式读出
    • US08076646B2
    • 2011-12-13
    • US11165937
    • 2005-06-24
    • James Frank CarubaJohn C. Engdahl
    • James Frank CarubaJohn C. Engdahl
    • G01T1/20
    • G01T1/2018G01T1/17
    • A partitioned pipeline read-out circuit architecture eliminates real-time constraints from off-chip read-out control electronics in a solid-state radiation detector system, so that an efficient decoupled architecture is possible. The front-end electronics includes a multi-channel ASIC with independently triggered charge sensitive pre-amplifiers, shaper circuits, and switched sample-and-hold capacitor circuits for each photodiode or pixel of the detector module. With this structure, individual photodiodes of the photodetector array can detect and store scintillation events independently and randomly. The ASIC is interfaced to an external successive approximation A/D converter for conversion and subsequent input to a data processing apparatus.
    • 分区管道读出电路架构消除了固态放射线检测器系统中芯片外读出控制电子装置的实时约束,从而有效的解耦架构是可能的。 前端电子器件包括一个多通道ASIC,具有独立触发的电荷敏感预放大器,整形电路,以及用于检测器模块的每个光电二极管或像素的开关采样保持电容电路。 利用这种结构,光电检测器阵列的各个光电二极管可独立且随机地检测和存储闪烁事件。 ASIC与外部逐次逼近A / D转换器接口,用于转换和随后输入到数据处理装置。