会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明申请
    • FAST AND ROBUST IDENTIFICATION OF EXTREMITIES OF AN OBJECT WITHIN A SCENE
    • 快速,可靠地识别场景中的对象
    • US20170068853A1
    • 2017-03-09
    • US14844313
    • 2015-09-03
    • gestigon GmbH
    • Sascha KlementFlorian HartmannFoti ColecaIbrahim Awada
    • G06K9/00G06K9/62G06T7/60G06K9/46
    • G06K9/00375G06K9/00G06K9/00201G06K9/00208G06K9/00335G06K9/00362G06K9/34G06K9/342G06K9/469G06K9/627G06K9/6296G06T7/66
    • Described herein are a system and method for identifying extremities of an object within a scene. The method comprises operating an image processing system to receive image data from a sensor. The image data represents an image of the scene with the object. The image data comprises a two-dimensional array of pixels and each pixel contains a depth value indicating distance from the sensor. The image processing system slices the image into slices. Each respective slice comprises those pixels with depth values that lie within a respective range of distances defined relative to a reference. For each of the slices, the method identifies one or more connected regions of pixels that are neighbors in the two-dimensional array of pixels. The method builds, based on the connected region of pixels that have been identified for the slices and depth information inherent to the respective slices, a graph consisting of interconnected nodes. The connected regions form the nodes of the graph and the nodes are interconnected in the graph based on their relative distance to the reference. Extremities of the object are determined based on the graph.
    • 这里描述了一种用于识别场景内的对象的四肢的系统和方法。 该方法包括操作图像处理系统以从传感器接收图像数据。 图像数据表示具有对象的场景的图像。 图像数据包括像素的二维阵列,并且每个像素包含指示距离传感器的距离的深度值。 图像处理系统将图像切片成切片。 每个相应的切片包括深度值位于相对于基准定义的相应距离范围内的那些像素。 对于每个切片,该方法识别在二维像素阵列中的邻近的像素的一个或多个连接的区域。 该方法基于已经针对切片识别的像素的连接区域和相应切片固有的深度信息构建由互连节点组成的图形。 连接的区域形成图的节点,并且节点在图中基于它们与参考的相对距离而互连。 基于图形确定对象的四肢。
    • 22. 发明申请
    • METHOD OF CONSTRUCTION OF ANOMALY MODELS FROM ABNORMAL DATA
    • 从异常数据构建异常模型的方法
    • US20160300126A1
    • 2016-10-13
    • US15100612
    • 2013-11-29
    • GE AVIATION SYSTEMS LIMITED
    • Robert Edward CALLANDavid Stephen HARDWICK
    • G06K9/66G06K9/62
    • G06K9/66G06K9/6215G06K9/6257G06K9/6259G06K9/6284G06K9/6296
    • A method (100) of constructing a probabilistic graphical model (10) of a system from data that includes both normal and anomalous data includes the step of learning parameters of a structure for the probabilistic graphical model (10). The structure includes at least one latent variable (26) on which other variables (12, 14, 16, 18, 20, 22, 24) are conditional, and has a plurality of components. The method further includes the steps of: iteratively associating one or more of the plurality of components of the latent variable (26) with normal data; constructing a matrix of the associations; detecting abnormal components of the latent variable (26) based on one of a low association with the normal data or the matrix of associations; and deleting the abnormal components of the latent variable (26) from the probabilistic graphical model (10).
    • 从包括正常数据和异常数据的数据构建系统的概率图形模型(10)的方法(100)包括学习用于概率图形模型(10)的结构的参数的步骤。 该结构包括至少一个潜在变量(26​​),其上的其他变量(12,14,16,18,20,22,24)是有条件的并且具有多个分量。 该方法还包括以下步骤:将潜在变量(26​​)的多个分量中的一个或多个与正常数据进行迭代关联; 构建关联矩阵; 基于与正常数据或关联矩阵的低关联性来检测潜变量(26​​)的异常成分; 以及从所述概率图形模型(10)中删除所述潜在变量(26​​)的异常分量。
    • 23. 发明申请
    • SYSTEM AND METHOD FOR PARTIALLY OCCLUDED OBJECT DETECTION
    • 用于部分监测对象检测的系统和方法
    • US20160180192A1
    • 2016-06-23
    • US14641506
    • 2015-03-09
    • Honda Motor Co., Ltd.
    • Alper AyvaciKai-Chi ChanBernd Heisele
    • G06K9/52G06K9/00G06K9/62
    • G06K9/00362G06K9/00805G06K9/4638G06K9/4642G06K9/6296
    • A method for partially occluded object detection includes obtaining a response map for a detection window of an input image, the response map based on a trained model and including a root layer and a parts layer. The method includes determining visibility flags for each root cell of the root layer and each part of the parts layer. The visibility flag is one of visible or occluded. The method includes determining an occlusion penalty for each root cell with a visibility flag of occluded and for each part with a visibility flag of occluded. The occlusion penalty is based on a location of the root cell or the part with respect to the detection window. The method determines a detection score for the detection window based on the visibility flags and the occlusion penalties and generates an estimated visibility map for object detection based on the detection score.
    • 一种用于部分遮挡的物体检测的方法包括获得输入图像的检测窗口的响应图,基于经过训练的模型的响应图,并且包括根层和部分层。 该方法包括确定根层的每个根单元和零件层的每个部分的可见性标志。 可见度标志是可见或闭塞之一。 该方法包括用遮挡的可见性标志以及具有遮挡的可见性标志的每个部分确定每个根细胞的遮挡罚分。 遮挡罚分是基于根单元或相对于检测窗口的部分的位置。 该方法基于可见性标志和遮挡罚分来确定检测窗口的检测分数,并且基于检测分数生成用于对象检测的估计可见度图。
    • 25. 发明授权
    • Object recognizer and detector for two-dimensional images using Bayesian network based classifier
    • 使用基于贝叶斯网络的分类器的二维图像的对象识别器和检测器
    • US09213885B1
    • 2015-12-15
    • US13901803
    • 2013-05-24
    • Carnegie Mellon University
    • Henry Schneiderman
    • G06K9/62G06K9/00
    • G06K9/6278G06K9/00228G06K9/00241G06K9/00288G06K9/6227G06K9/6282G06K9/6296G06K9/66
    • System and method for determining a classifier to discriminate between two classes—object or non-object. The classifier may be used by an object detection program to detect presence of a 3D object in a 2D image. The overall classifier is constructed of a sequence of classifiers, where each such classifier is based on a ratio of two graphical probability models. A discreet-valued variable representation at each node in a Bayesian network by a two-stage process of tree-structured vector quantization is discussed. The overall classifier may be part of an object detector program that is trained to automatically detect different types of 3D objects. Computationally efficient statistical methods to evaluate overall classifiers are disclosed. The Bayesian network-based classifier may also be used to determine if two observations belong to the same category.
    • 用于确定分类器以区分两个类(对象或非对象)的系统和方法。 分类器可以被对象检测程序用于检测2D图像中的3D对象的存在。 整体分类器由分类器序列构成,其中每个分类器基于两个图形概率模型的比率。 讨论了通过树结构矢量量化的两阶段过程在贝叶斯网络中的每个节点处的谨慎值变量表示。 总体分类器可以是被检测以自动检测不同类型的3D对象的对象检测器程序的一部分。 公开了用于评估整体分类器的计算有效的统计方法。 也可以使用基于贝叶斯网络的分类器来确定两个观测值是否属于同一类别。
    • 27. 发明授权
    • Method for the automated extraction of a planogram from images of shelving
    • 用于从搁架图像自动提取平面图的方法
    • US09141886B2
    • 2015-09-22
    • US14004714
    • 2012-03-05
    • Adrien AuclairAnne-Marie Tousch
    • Adrien AuclairAnne-Marie Tousch
    • G06K9/62G06K9/72G06Q10/08G06Q30/02
    • G06K9/6296G06K9/62G06K9/6292G06K9/72G06K2209/17G06Q10/087G06Q30/0201
    • A method for automatically constructing a planogram from photographs of shelving, replacing laborious manual construction includes the following steps: a step (1) in which the images are received, a step (2) in which the images are assembled, a step (3) in which the structure is automatically constructed, a step (4) in which the products are automatically detected, and a step (5) in which the products are positioned in the structure. The product detection step (4) enhances traditional image recognition techniques, using artificial learning techniques to incorporate characteristics specific to the planograms. This product detection step (4) also includes at least two successive classification steps, namely: an initialization step (41) with detection of product categories; and a classification step (42) with the classification of the products themselves, each of these steps including a first image recognition step, followed by a statistical filtering step based on the characteristics specific to the planograms.
    • 一种用于从搁架照片自动构建平面图的方法,替代费力的手动构造包括以下步骤:步骤(1),其中接收图像;步骤(2),其中组装图像;步骤(3) 其中自动构造结构,其中自动检测产品的步骤(4)以及产品位于结构中的步骤(5)。 产品检测步骤(4)增强了传统的图像识别技术,使用人工学习技术来结合平面图特有的特征。 该产品检测步骤(4)还包括至少两个连续的分级步骤,即:检测产品类别的初始化步骤(41) 以及具有产品本身分类的分类步骤(42),这些步骤中的每一个包括第一图像识别步骤,随后是基于对于图表特有的特征的统计过滤步骤。
    • 28. 发明申请
    • VISUAL RECOGNITION USING SOCIAL LINKS
    • 使用社会链接的视觉识别
    • US20150262037A1
    • 2015-09-17
    • US14215925
    • 2014-03-17
    • YAHOO! INC.
    • Jia LiXiangnan Kong
    • G06K9/66G06N99/00G06F17/24
    • G06F17/241G06F17/30598G06K9/00677G06K9/6296
    • System, method and architecture for providing improved visual recognition by modeling visual content, semantic content and an implicit social network representing individuals depicted in a collection of content, such as visual images, photographs, etc. which network may be determined based on co-occurrences of individuals represented by the content, and/or other data linking the individuals. In accordance with one or more embodiments, using images as an example, a relationship structure may comprise an implicit structure, or network, determined from co-occurrences of individuals in the images. A kernel jointly modeling content, semantic and social network information may be built and used in automatic image annotation and/or determination of relationships between individuals, for example.
    • 系统,方法和架构,用于通过建模视觉内容,语义内容和表示在诸如视觉图像,照片等的内容集合中描绘的个人的隐含的社交网络来提供改进的视觉识别。该网络可以基于共同事件来确定 由内容代表的个人和/或连接个人的其他数据。 根据一个或多个实施例,使用图像作为示例,关系结构可以包括由图像中的个体的共同出现确定的隐式结构或网络。 联合建模内容,语义和社交网络信息的内核可以被构建并用于例如自动图像注释和/或个体之间的关系的确定。